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1. Introduction

In a beautiful and influential paper, Tadmor, Nezzar and Vese [42] introduced a multi-
scale hierarchical representation of an image, and proved corresponding convergence and 
energy decomposition results. Their starting point is the Rudin–Osher–Fatemi model for 
image restoration: given a (possibly noisy) image f ∈ L2(R2) and a positive parameter 
λ0, one seeks the solution u0 of

min
{
λ0‖f − u‖2

L2(R2) + ‖u‖BV (R2) : u ∈ L2(R2)
}
. (1.1)

Here BV (R2) is the homogeneous BV (R2) space and for any u ∈ BV (R2), the norm 
‖u‖BV (R2) denotes the total variation of its distributional gradient Du; see the beginning 
of Subsection 3.2 for details. The variational problem (1.1) is uniquely solvable, and 
yields a decomposition of f as f = u0 + v0, where v0 is the residual. The solution u0 is 
expected to keep the most relevant features of the image while the residual v0 contains 
the noisy part. The fidelity parameter λ0 determines the amount of features preserved 
and the noise at that scale. Indeed, for higher λ0 the solution u0 is closer to f and less 
noise is removed. The idea in [42] is to start with a relatively low value of λ0 and then 
iterate the procedure by replacing λ0 with a larger parameter λ1 and f with v0. Then 
f = u0 + u1 + v1. Continuing in this manner, given an increasing sequence of positive 
parameters λn, n = 0, 1, 2, . . ., for any j ∈ N one obtains

f = u0 + u1 + . . . + uj + vj .
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If vj converges to 0 as j goes to infinity, then this method provides a multiscale repre-
sentation f =

∑∞
j=0 uj of the image f . The result proved in [42, Theorem 2.2] is the 

following:

Theorem 1.1 (Tadmor–Nezzar–Vese). Let f ∈ BV (R2). Let λn = λ02n for some λ0 > 0
and any n ∈ N. Then f admits the following (BV, L2) hierarchical decomposition:

f =
+∞∑
j=0

uj (1.2)

where the convergence is in the strong sense in L2(R2). Furthermore, the following energy 
identity holds:

‖f‖2
L2(R2) =

+∞∑
j=0

[
1
λj

‖uj‖BV (R2) + ‖uj‖2
L2(R2)

]
. (1.3)

This result was extended in [42, Corollary 2.3] to f belonging to a class of intermediate 
spaces between L2 and BV . The question of whether it holds for any f ∈ L2 was left 
open.1 We will show in Theorem 2.2 that the above theorem extends to arbitrary f ∈ L2, 
as a special case of a more general result, Theorem 2.1.

One of the main aims of our paper is to construct analogous hierarchical expansions for 
diffeomorphisms in the context of image registration, with the sum above being replaced 
by composition of maps. In image registration, one seeks an optimal diffeomorphism be-
tween two given images. This is an important problem in medical imaging, when one 
needs to align two images obtained at different times or with different instrumenta-
tion by transforming one to the other. Mathematically, given two images I0 and I1 as 
L2-functions on a domain Ω, one wishes to find a diffeomorphism g of Ω which solves 
the minimization problem:

min{‖I0 ◦ g−1 − I1‖L2(Ω) : g ∈ GH}. (1.4)

Here GH is a Banach manifold of diffeomorphisms (depending on a choice of Hilbert 
space H) which will be defined in Subsection 2.4. This problem is sometimes referred to 
as “greedy matching”. The standard approach to its solution is via a gradient flow. This 
approach often leads to serious difficulties, both theoretically and practically. (See [45]
where these issues are explained in detail). The Large Deformation Diffeomorphic Metric 
Mapping (LDDMM) theory of image registration provides a beautiful geometric regular-
ization of (1.4) by introducing a Riemannian metric on GH and penalizing the geodesic 

1 We wish to thank the anonymous referee for bringing to our attention reference [20] where such a result 
was announced in the context of a more general interpolation theory approach. A complete proof does not 
appear to have been published.
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distance of the diffeomorphism g to the identity map. This will be described in more 
in detail in Subsection 2.4. Starting from this regularized problem, we develop a geo-
metric multiscale framework and use it to prove that if a solution to (1.4) exists then it 
has a hierarchical expansion (analogous to (1.2)) as the composition of infinitely many 
deformations of increasingly finer scales. The multiscale approach to image registration 
developed in this paper can thus be seen as a bridge between greedy matching and LD-
DMM: the multiscale construction consists of a series of “LDDMM steps”, and we show 
that it yields a convergent decomposition of an optimal solution, provided a solution 
to (1.4) exists. In this context, an optimal solution is one with minimal distance to the 
identity. In Subsection 2.4 below we briefly describe the LDDMM approach to image 
registration and illustrate our main results in this direction, in particular Theorem 2.13
which we believe to be the best result of the paper. The detailed proofs and further 
results are given in Section 5. For other multiscale approaches to image registration, 
completely different from the one presented here, we refer the reader to [32,33], [38,39], 
[29–31], [7] and [17].

A second aim of our paper is to develop an analogous multiscale framework suitable 
for nonlinear inverse problems. To illustrate the main ideas in this direction, we focus 
on one particular inverse problem which has been extensively investigated, namely the 
Calderón inverse conductivity problem. Initially motivated by geophysical prospection, 
and more recently by medical imaging, this concerns the determination of the conduc-
tivity σ of a body Ω from voltage and current measurements at the surface ∂Ω. In 
particular, here we allow for possibly nonsmooth conductivities for which uniqueness 
results may not be available. The given data is encoded in a nonlinear operator N (σ), 
the Neumann-to-Dirichlet (or current-to-voltage) map on ∂Ω.

Specifically, for a given input current i on the boundary (assumed to have zero mean), 
N (σ)(i) is defined as:

N (σ)(i) = v|∂Ω

with the potential v the solution to the electrostatic boundary value-problem:
⎧⎪⎪⎨
⎪⎪⎩

div(σ∇v) = 0 in Ω
σ∇v · ν = i on ∂Ω∫
∂Ω v = 0.

(1.5)

Typical of many inverse problems, the problem of determining σ from knowledge of N (σ)
is severely ill-posed. To overcome this difficulty a regularization method is often used. Our 
multiscale procedure starts with a relatively well-posed problem, corresponding to a low 
value of the regularization parameter λ, that allows us to recover stably the main features 
of the unknown conductivity. Subsequent steps involve higher values of λ to recover finer 
details; we then have to deal with ill-posed problems but have a very good initial guess 
at every stage. (In this respect, our method shares some of the advantages of homotopy 
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continuation algorithms for inverse problems which rely, for instance, on multifrequency 
data; see e.g. [13]). The resulting iterative procedure allows us to numerically solve the 
inverse problem and simultaneously obtain a multiscale representation of its solution. 
Significantly, this multiscale representation is driven by the inverse problem itself rather 
than some post-processing of the solution. We present our main multiscale results for 
the Calderón problem in Subsection 2.3, in particular Theorem 2.8, along with a brief 
review of the relevant background. The proofs and further results are given in Section 6.

The above apparently completely different problems (LDDMM and Calderón) from 
two distinct fields led us to a general multiscale theory relevant to a wide range of appli-
cations that involve the minimization of the sum of a fidelity term and a regularization 
term. Our general abstract results for nonlinear inverse problems are introduced in Sub-
sections 2.1 and 2.2 with the details and proofs given in Section 3. The extension of the 
general framework, replacing addition by other group actions so as to be able to handle 
composition of maps, is developed in Section 4.

Finally, in Appendix A we give several counterexamples showing the optimality of our 
abstract results.

2. Background and main results

We begin with a simple general formulation motivated by nonlinear inverse problems. 
This will serve to introduce some of the main ideas, and it will already provide a result 
sufficiently sharp to include the extension of Theorem 1.1 to f ∈ L2. Subsequently, to 
obtain the convergence properties we seek, we will need to introduce a tighter multiscale 
algorithm.

2.1. A multiscale framework for nonlinear inverse problems (first version)

Let X be a real Banach space with norm ‖ · ‖ = ‖ · ‖X . Let E be a closed nonempty 
subset of X.

Let Y be a metric space with distance d = dY . Let N : E → Y be a possibly nonlinear 
map and let N̂ ∈ Y . (We think of N̂ as the given data). We assume that the function 
E � σ �→ d(N̂ , N (σ)) is continuous with respect to the (strong) convergence in X.

We also assume that there exists a function | · | : X → [0, +∞] such that:

1) |0| = 0 and | − x| = |x| for any x ∈ X;
2) |x + y| ≤ |x| + |y| for any x, y ∈ X;
3) {x ∈ X : |x| < +∞} is dense in X.

We fix two positive constants α and β and we assume that the following regularized 
minimization problem admits a solution for any σ̂ ∈ X and any λ > 0

min
{(

λ[d(N̂ ,N (σ̂ + σ))α] + |σ|β
)

: σ̂ + σ ∈ E
}
. (2.1)
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Let us note here that existence of a solution to (2.1) may be guaranteed, under the 
above assumptions, if | · | also satisfies the following:

4) {x ∈ X : |x| ≤ b} is relatively sequentially compact in X for any b ∈ R;
5) | ·| is sequentially lower semicontinuous on X, with respect to the (strong) convergence 

in X.

Inspired by the procedure in [42], we consider the following construction. Let us fix 
positive parameters λn, n ∈ N, and let σ0 be a solution to

min
{(

λ0[d(N̂ ,N (σ))α] + |σ|β
)

: σ ∈ E
}
. (2.2)

The multiscale algorithm then constructs σn, n ≥ 1, inductively as a solution to

min
{(

λn[d(N̂ ,N (σ̃n−1 + σ))α] + |σ|β
)

: σ̃n−1 + σ ∈ E
}

(2.3)

where we denote by σ̃n the partial sum:

σ̃n =
n∑

j=0
σj for any n ∈ N. (2.4)

Our assumptions guarantee that the sequence {σn}n∈N exists, however in general it 
need not be uniquely determined. Note that by taking σ = 0, we have

λn[d(N̂ ,N (σ̃n))α] + |σn|β ≤ λn[d(N̂ ,N (σ̃n−1))α] + |0|β ,

hence

d(N̂ ,N (σ̃n)) ≤ d(N̂ ,N (σ̃n−1)) for any n ≥ 1. (2.5)

Let us denote

ε0 = lim
n

d(N̂ ,N (σ̃n))

and

δ0 = inf{d(N̂ ,N (σ)) : σ ∈ E}.

Our first general result is the following. See Subsection 3.1 for a proof.

Theorem 2.1. Under the assumptions listed above, if

lim sup 2βn
< +∞, (2.6)
n λn
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then for the multiscale sequence {σ̃n}n∈N given by (2.2), (2.3) and (2.4) we have ε0 = δ0, 
that is:

lim
n

d(N̂ ,N (σ̃n)) = inf{d(N̂ ,N (σ)) : σ ∈ E}.

In particular, this result improves on Theorem 1.1, namely we have the following.

Theorem 2.2. The conclusions of Theorem 1.1 are valid for any f ∈ L2(R2).

Specifically, to obtain Theorem 2.2 we apply Theorem 2.1 to the following setting: let 
X = E = L(R2), Y = L(R2), with the distance induced by the L2 norm, N = Id and 
N̂ = f ∈ L2(R2). Also let | ·| = ‖ ·‖BV (R2), α = 2 and β = 1. We refer to Subsection 3.2 for 
further details. Indeed, in Theorems 3.2 and 3.3 we shall state and prove a generalization 
of Theorem 2.2 to any dimension as well as to bounded and Lipschitz open subsets of 
R

N , N ≥ 1. We point out, however, that the proof of the energy equality (1.3) is only 
valid for N = 2.

To show the versatility of our abstract framework we list below some simple exam-
ples which satisfy the required assumptions. A much more elaborate and interesting 
application, to the inverse problem of Calderón, will be described in Subsection 2.3.

Example 2.3. Let Ω be an open and bounded subset of RN , N ≥ 1, and assume that 
Ω has a Lipschitz boundary. Then our assumptions 1)—5) are verified in the following 
cases.

• X = L1(Ω), with its usual norm, E any nonempty closed subset of X, and |u| =
‖u‖BV (Ω) for any u ∈ L1(Ω);

• X = L2(Ω), with its usual norm, E any nonempty closed subset of X, and |u| =
‖u‖W 1,2(Ω) = ‖u‖L2(Ω) + ‖∇u‖L2(Ω) for any u ∈ L2(Ω);

• X = C0(Ω), with its usual sup norm, E any nonempty closed subset of X, and, for 
some α, 0 < α ≤ 1, |u| = ‖u‖C0,α(Ω) = ‖u‖L∞(Ω) + |u|C0,α(Ω) for any u ∈ C0(Ω). 
Here, as usual,

|u|C0,α(Ω) = sup
{
|u(x) − u(y)|
‖x− y‖α : x, y ∈ Ω, x �= y

}
.

We recall that for any bounded open set Ω ⊂ R
N , N ≥ 1, a function u ∈ L1(Ω)

belongs to BV (Ω) if Du, its gradient in the distributional sense, is a bounded vector 
valued Radon measure on Ω. We equip BV (Ω) with the usual norm

‖u‖BV (Ω) = ‖u‖L1(Ω) + |u|BV (Ω)

where the seminorm | · |BV (Ω) is defined as the total variation of Du on Ω that is
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|u|BV (Ω) = |Du|(Ω).

While Theorem 2.1 shows that the construction in (2.2), (2.3) and (2.4) yields a 
minimizing sequence {N (σ̃n)}n∈N, much of the work in the paper will be to go beyond 
this and also prove convergence results for {σ̃n}n∈N or one of its subsequences. This is 
of course automatic in the case of Theorem 2.2 where N = Id, and also easy to show if 
N (σ̃) satisfies a mild coercivity condition (see Proposition 3.1), but for general nonlinear 
ill-posed problems it will become clear that we need a tighter multiscale construction. 
Such a construction is presented in the next subsection.

2.2. A tighter multiscale construction for nonlinear problems

We keep the assumptions of the previous subsection, in particular we suppose that 
| · | satisfies assumptions 1)—5). We fix positive constants α, β, γ and let λn > 0 and 
an ≥ 0 for any n ∈ N. We assume that an ≤ an−1 for any n ≥ 1.

Let now σ0 be a solution to

min
{(

λ0[d(N̂ ,N (σ))α + a0|σ|γ ] + |σ|β
)

: σ ∈ E
}
. (2.7)

Our assumptions guarantee that at least one minimizer σ0 does exist. We then construct 
σn, n ≥ 1, inductively by solving

min
{(

λn[d(N̂ ,N (σ̃n−1 + σ))α + an|σ̃n−1 + σ|γ ] + |σ|β
)

: σ̃n−1 + σ ∈ E
}
, (2.8)

where for any n ≥ 1 we denote as before

σ̃n−1 =
n−1∑
j=0

σj . (2.9)

Again our assumptions guarantee that the sequence {σn}n∈N exists, however we cannot 
guarantee that it is uniquely determined.

We point out that when an is 0 for all n ∈ N, we are exactly in the case described 
in the previous subsection. On the other hand, for nonzero an we not only penalize the 
value of | · | of the increment σn but also that of the partial sum σ̃n. By taking σ = 0, 
one immediately finds that

d(N̂ ,N (σ̃n))α ≤ d(N̂ ,N (σ̃n))α + an|σ̃n|γ ≤ d(N̂ ,N (σ̃n−1))α + an−1|σ̃n−1|γ (2.10)

for any n ≥ 1. Let

ε0 = lim
n

(
d(N̂ ,N (σ̃n))α + an|σ̃n|γ

)1/α
.

Clearly we have that ε0 ≥ δ0 = inf{d(N̂ , N (σ)) : σ ∈ E}.
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We first show that the conclusion of Theorem 2.1 still holds in this more general case.

Theorem 2.4. We assume that

an ≤ an−1 for any n ≥ 1, lim
n

an = 0 and lim sup
n

2βn

λn
< +∞. (2.11)

Then for the sequence {σ̃n}n∈N defined by (2.9) from the sequence {σn}n∈N obtained 
from (2.7) and (2.8) we have ε0 = δ0 and we also have

lim
n

d(N̂ ,N (σ̃n)) = δ0.

For a proof we again refer to Subsection 3.1. We now turn to the main point of the 
new construction, which is to find conditions for the convergence of {σ̃n}n∈N. We begin 
by observing that, if this sequence (or one of its subsequences) converges to some σ̃∞, 
then σ̃∞ is a solution to

min{d(N̂ ,N (σ)) : σ ∈ E}. (2.12)

Therefore, an immediate necessary condition for the convergence of {σ̃n}n∈N, or of one 
of its subsequences, is that a solution to (2.12) does exist. A sufficient condition is 
guaranteed by the following stronger assumption. Suppose that there exists σ̂ ∈ E such 
that

d(N̂ ,N (σ̂)) = δ0 = min{d(N̂ ,N (σ)) : σ ∈ E} and |σ̂| < +∞. (2.13)

Without loss of generality we may then assume that σ̂ solves the following minimization 
problem

min{|σ| : σ ∈ E and d(N̂ ,N (σ)) = δ0} < +∞. (2.14)

This condition may seem rather restrictive. However, in Appendix A, we show through 
several examples that our general abstract results are optimal in several respects. In 
particular, the two cases given in Example A.3 suggest that a condition such as (2.13)
might not be removed or even relaxed if we wish to have convergence of {σ̃n}n∈N. Let 
us call Ê the set of solutions of (2.14). We note that Ê is sequentially compact in X.

In the result below we also need a stronger assumption on the parameters, namely

an ≤ an−1 for any n ≥ 1, lim
n

an = 0 and lim sup
n

2βn

λnan
= 0. (2.15)

Note that in particular we are assuming an > 0 for any n ≥ 0 and that (2.15) implies 
that lim supn 2βn/λn = 0.

We have the following convergence result, which will be proved in Subsection 3.1.
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Theorem 2.5. Assume that (2.15) holds and that there exists a solution σ̂ of (2.14). 
Consider the sequence {σ̃n}n∈N defined by (2.9) from the sequence {σn}n∈N obtained 
from (2.7) and (2.8).

Then σ̃n converges, up to a subsequence, to σ̃∞ where σ̃∞ is a (possibly different 
from σ̂) solution to (2.14), that is, d(N̂ , N (σ̃∞)) = δ0 and |σ̃∞| = |σ̂|. Furthermore, we 
have that

lim
n

|σ̃n| = |σ̂|

and

lim
n

dist(σ̃n, Ê) = 0, (2.16)

where for any σ ∈ X, dist(σ, Ê) = inf{‖σ − σ̂‖ : σ̂ ∈ Ê}.

It is still possible, however, that two different subsequences converge to two different 
solutions of (2.14), as the counterexample in Subsection A.2 shows.

On the other hand, if (2.14) has a unique solution σ̂, then the above construction 
yields the multiscale decomposition

σ̂ = lim
n

σ̃n =
∞∑
j=0

σj

in the sense of strong convergence in X.
The proof of Theorem 2.5 will be given in Subsection 3.1 along with further details on 

the abstract multiscale framework. In the next subsection we will describe the application 
of this general framework to multiscale results for the inverse conductivity problem. In 
the subsequent subsection we will introduce our multiscale approach to the registration 
problem.

2.3. The inverse problem of Calderón

The inverse problem proposed by Calderón in 1980 concerns the determination of the 
conductivity of an object from electrostatic measurements of current and voltage type 
at the boundary.

In the case of scalar (i.e. isotropic) conductivities, uniqueness was proved, in di-
mension 3 and higher, first in [21,22] for the determination of the conductivity at the 
boundary and for the analytic case, then in [41] for C2 smooth conductivities. The two 
dimensional case was first solved in [27] for conductivities in W 1,p(Ω) with p > 1.

Recently these uniqueness results have been considerably sharpened. For N = 2
uniqueness was proved for bounded conductivities, without any regularity assumptions, 
in [5] and even for certain classes of conductivities which need not be bounded from 
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above or below, in [4] and [28]. For N ≥ 3, uniqueness has been shown for C1 conduc-
tivities, as well as for Lipschitz conductivities close to the identity in [19]; this smallness 
condition was removed in [11]. For dimensions N = 3, 4 uniqueness has been proved 
in [18] for conductivities in W 1,N (Ω). In the case of anisotropic conductivities, since 
boundary measurements are invariant under suitable changes of coordinates that keep 
the boundary fixed, uniqueness does not hold. However, at least in dimension 2 for sym-
metric conductivity tensors, this is the only obstruction as shown first in [40] and [27]
in the smooth case and then in [6] in the general case.

We need some notation in order to describe the classes of conductivities we will be 
working with. Let us fix positive constants a and b, with 0 < a ≤ b. For N ≥ 2, we call 
M

N×N (R) the space of real valued N ×N matrices. We shall use the following ellipticity 
condition for a given σ ∈ M

N×N (R)

{
σξ · ξ ≥ a‖ξ‖2 for any ξ ∈ R

N

σ−1ξ · ξ ≥ b−1‖ξ‖2 for any ξ ∈ R
N .

(2.17)

If σ is symmetric then (2.17) is equivalent to the condition

a‖ξ‖2 ≤ σξ · ξ ≤ b‖ξ‖2 for any ξ ∈ R
N . (2.18)

Finally, if σ = sIN , where IN is the N ×N identity matrix and s is a real number, the 
condition further reduces to

a ≤ s ≤ b.

We define the following classes of conductivity tensors in Ω, Ω ⊂ R
N being a bounded 

open set. We call M(a, b) the set of σ ∈ L∞(Ω, MN×N (R)) such that, for almost any 
x ∈ Ω, σ(x) satisfies (2.17). We call Msym(a, b), respectively Mscal(a, b), the set of 
σ ∈ M(a, b) such that, for almost any x ∈ Ω, σ(x) is symmetric, respectively σ(x) =
s(x)IN with s(x) a real number. By a conductivity tensor σ in Ω, respectively symmetric 
conductivity tensor or scalar conductivity, we mean σ ∈ M(a, b), respectively Msym(a, b)
or Mscal(a, b), for some constants 0 < a ≤ b.

Let Ω ⊂ R
N , N ≥ 2, be a bounded domain with Lipschitz boundary. We will use 

the notation W 1/2,2(∂Ω) for the Sobolev space of traces of W 1,2(Ω) functions on ∂Ω
and W−1/2,2(∂Ω) for its dual. We recall that W 1/2,2(∂Ω) ⊂ L2(∂Ω) with continuous 
immersion.

We denote by L2
∗(∂Ω) the subspace of functions f ∈ L2(∂Ω) such that 

∫
∂Ω f = 0. 

Correspondingly, we write W−1/2,2
∗ (∂Ω) for the subspace of g ∈ W−1/2,2(∂Ω) such that

〈g, 1〉(W−1/2,2(∂Ω),W 1/2,2(∂Ω)) = 0.
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Note that L2
∗(∂Ω) ⊂ W

−1/2,2
∗ (∂Ω), with continuous immersion. We also denote with 

W
1/2,2
∗ (∂Ω) the subspace of ψ ∈ W 1/2,2(∂Ω) such that 

∫
∂Ω ψ = 0. Clearly we have 

W
1/2,2
∗ (∂Ω) ⊂ L2

∗(∂Ω) with continuous immersion.
For any two Banach spaces B1, B2, L(B1, B2) will denote the Banach space of bounded 

linear operators from B1 to B2 with the usual operator norm.
For a conductivity tensor σ ∈ M(a, b), the corresponding Neumann-to-Dirichlet map 

N (σ) is defined for each g ∈ W
−1/2,2
∗ (∂Ω), as

N (σ)(g) = v|∂Ω

with v the solution to ⎧⎪⎨
⎪⎩

−div(σ∇v) = 0 in Ω
σ∇v · ν = g on ∂Ω∫
∂Ω v = 0.

(2.19)

Then N (σ) is bounded linear operator

N (σ) : W−1/2,2
∗ (∂Ω) → W

1/2,2
∗ (∂Ω)

with norm bounded by a constant depending only on N , Ω and a.
The inverse conductivity problem thus consists in inverting the operator

N : M(a, b) → L(W−1/2,2
∗ (∂Ω),W 1/2,2

∗ (∂Ω)),

i.e. in determining an unknown conductivity σ from knowledge of the corresponding 
Neumann-to-Dirichlet map N (σ).

To apply our general multiscale approach to this problem we proceed as follows. Let 
X = L1(Ω, MN×N (R)), with its natural norm, namely

‖σ‖L1(Ω) = ‖(‖σ‖)‖L1(Ω),

where for any N×N matrix σ, ‖σ‖ denotes its norm as a linear operator of RN into itself. 
We may take as subset E any of the following classes M(a, b), Msym(a, b) or Mscal(a, b). 
We need continuity of the nonlinear operator N : E → Y . This is guaranteed, for 
example, if we choose Y = L(L2

∗(∂Ω), L2
∗(∂Ω)), with the distance d induced by its norm. 

Such a choice for Y is a particularly convenient one, see for instance the discussion in [35]. 
For the continuity of N with respect to the strong convergence in X and the distance d
on Y , see Proposition 6.2 and Remark 6.3.

Here N̂ ∈ Y will be the measured Neumann-to-Dirichlet map. The nonnegative num-
ber δ0 = inf{‖N̂ −N (σ)‖Y : σ ∈ E} corresponds to the noise level of the measurements.

There are several possible choices for | · |. A particularly interesting one, already 
widely used in applications, is the total variation regularization. Namely, we define, for 
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any σ ∈ X, TV (σ) as the matrix such that TV (σ)ij = TV (σij) = |Dσij |(Ω) and set 
|σ|BV (Ω) = ‖TV (σ)‖ for any σ ∈ X. We also define for any σ ∈ X

‖σ‖BV (Ω) = ‖σ‖L1(Ω) + |σ|BV (Ω).

Then we may choose as | · | either | · |BV (Ω) or ‖ · ‖BV (Ω).
We note that the use of total variation regularizations for the inverse conductivity 

problem has been shown to be effective from a numerical point of view in several papers, 
see for instance [15,37,12,14]. Analytical evidence, through a convergence analysis, of 
the efficacy of these regularization methods was proved in [34]; see also [36] for further 
developments in this direction.

In the setting described above, all the assumptions 1)—5) are verified. Therefore, 
Theorem 2.1, with the same notation, reads as follows.

Theorem 2.6. If (2.6) is satisfied, then for the multiscale sequence {σ̃n}n∈N given by 
(2.2), (2.3) and (2.4) we have that

lim
n

‖N̂ − N (σ̃n)‖Y = inf{‖N̂ − N (σ)‖Y : σ ∈ E}.

For the inverse conductivity problem, we can actually obtain from this a very weak 
convergence result on σ̃n as well, if we make use of the notion of H-convergence, intro-
duced in the context of homogenization.

Corollary 2.7. Under the assumptions of Theorem 2.6, if E = M(a, b) or E =
Msym(a, b), then, up to a subsequence, σ̃n H-converges to σ̃∞ ∈ E, where σ̃∞ is a 
solution of

min{‖N̂ − N (σ)‖Y : σ ∈ E}. (2.20)

Theorem 2.6 and Corollary 2.7 are special cases of Theorem 6.4, that will be stated 
and proved in Section 6.

We note that a solution to (2.20) corresponds to a solution to our inverse conductivity 
problem. Therefore, we have found a numerical algorithm to obtain the solution σ̃∞ to 
the inverse problem and, simultaneously, a multiscale representation of σ̃∞, namely

σ̃∞ = lim
k

σ̃nk
= lim

k

nk∑
i=0

σi, (2.21)

where the limit has to be understood in the sense of H-convergence. For a definition of 
H-convergence and its basic properties we refer to [3,25,26]. Here we just remark that for 
symmetric conductivity tensors H-convergence reduces to the more usual G-convergence 
and that M(a, b) and Msym(a, b) are compact with respect to H-convergence. We also 
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recall that G- or H-convergence has already been shown to be a useful tool in the context 
of the inverse conductivity problem, see for instance [23,2,16,35,36].

On the other hand, the result in Corollary 2.7 has some drawbacks. The first one 
is that the convergence is in an extremely weak sense and that we exploit in a crucial 
way the compactness of E with respect to this kind of convergence. This is a particular 
feature of the problem we are considering but it might not occur in a more general case, 
like the one used in our abstract setting. The second one is that it does not hold for scalar 
conductivities. In fact, if we restrict ourselves to scalar conductivities, that is, we choose 
E = Mscal(a, b), several difficulties arise. First of all, existence of a solution to (2.20)
may fail, see for instance Example 3.4 in [35], and also Example 2.5 in [36]. Secondly, 
and more importantly, by compactness of H-convergence, it is still true that σ̃n, up to 
a subsequence, H-converges to σ̃∞, but we can not assure that the limit σ̃∞ is a scalar 
conductivity.

If we wish to have a stronger convergence than H-convergence, and to have a con-
vergence result for scalar conductivities as well, we need to use the tighter multiscale 
construction from Subsection 2.2. Thus, keeping the setting above, we now assume in 
addition that there exists σ̂ ∈ E solving the following minimization problem

min{|σ| : σ ∈ E and ‖N̂ − N (σ)‖Y = δ0} < +∞. (2.22)

We call Ê the set of solutions of (2.22). We note that Ê is compact in X and that 
corresponds to the set of (numerical) solutions of our inverse problem which have minimal 
value of | · |, that is, that have minimal total variation among all possible solutions, if 
| · | = | · |BV . We now construct σn, and using (2.9) σ̃n as well, for n ≥ 1 inductively by 
solving the minimization problems (2.7) and (2.8). The convergence result then reads as 
follows.

Theorem 2.8. Assume that (2.15) holds and that there exists a solution σ̂ of (2.22).
Consider the sequence {σ̃n}n∈N defined by (2.9) from the sequence {σn}n∈N obtained 

from (2.7) and (2.8).
Then a subsequence σ̃nk

converges to σ̃∞ strongly in X, where σ̃∞ is a (possibly 
different from σ̂) solution to (2.22), that is, d(N̂ , N (σ̃∞)) = δ0 and |σ̃∞| = |σ̂|. We thus 
have a multiscale decomposition of σ̃∞:

σ̃∞ = lim
k

nk∑
i=0

σi, (2.23)

which is convergent in the norm of X. Moreover, we have that

lim
n

|σ̃n| = |σ̂|

and
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lim
n

dist(σ̃n, Ê) = 0. (2.24)

Theorem 2.8 is a special case of Theorem 6.5, which will be stated and proved in 
Section 6. Here we make a few remarks. If E = M(a, b) or E = Msym(a, b), then 
we can guarantee existence of a solution of (2.20), see Proposition 6.1. Uniqueness, 
however, is not guaranteed. (For example, if the noise level is zero, that is N̂ = N (σ)
for some σ ∈ E, the nonuniquenes of the inverse conductivity problem for anisotropic 
conductivities implies that uniqueness indeed fails).

If the measured N̂ is admissible, i.e. N̂ = N (σ) for some σ ∈ E with |σ| < +∞
then we also have existence for (2.22). In the case of non-zero noise level, existence of a 
solution of (2.22) is not easy to prove.

Further details and complete proofs for our results on the Calderón problem are in 
Section 6.

We next address a very different problem, namely that of image registration. We seek 
to extend our multiscale framework to obtain hierarchical decompositions of diffeomor-
phisms arising in image registration problems.

2.4. Multiscale algorithm for diffeomorphic image registration

We review the Large Deformation Diffeomorphic Metric Mapping (LDDMM) ap-
proach to image registration, mainly following Chapter 8 of [45] and Section 3 of [9]. 
See also [8] and earlier references therein. To begin with, we define GH, the group of 
diffeomorphisms we will be working with, first introduced by Trouvé [43,44], along with 
a distance function on GH. This will make it possible to quantify the size of a defor-
mation by its distance to the identity map. Let Ω be an open subset of RN , N ≥ 1. 
We say that H, a Hilbert space of vector fields on Ω, is admissible if it is contained and 
continuously embedded in C1

0(Ω, RN ), the space of C1 vector fields u on Ω such that u
and Du vanish on ∂Ω and at infinity. An example of an admissible Hilbert space H is 
the Sobolev space Hs

0(Ω, RN ) = W s,2
0 (Ω, RN ) for any s > N/2 + 1. Having chosen an 

admissible H, we consider the Hilbert space L2([0, 1], H) of time-dependent vector fields 
with the usual scalar product

〈u, v〉L2([0,1],H) =
1∫

0

〈u(t), v(t)〉Hdt for any u, v ∈ L2([0, 1],H).

We let

GH = {g = ϕu(1) : u ∈ L2([0, 1],H)} (2.25)

where ϕu is the solution of ∂tϕ = u ◦ ϕ with initial condition ϕ(0) = e, e denoting the 
identity map.
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For any t ∈ [0, 1], in particular for t = 1, the map ϕu(t) is a C1 diffeomorphism of 
Ω onto itself. Actually, ϕu(t) (and its inverse as well) may be extended to all of RN by 
letting it be equal to the identity outside Ω and this extension is a C1 diffeomorphism 
of RN onto itself.

The set GH thus defined is a group with respect to the composition of maps and a 
complete metric space endowed with the distance

dH(g0, g1) = min
u∈L2([0,1],H)

{‖u‖ : g1 = g0 ◦ ϕu(1)} for any g0, g1 ∈ GH.

Here and in the sequel ‖u‖ = ‖u‖L2([0,1],H). The distance satisfies the following left 
invariance property

dH(g0, g1) = dH(g ◦ g0, g ◦ g1) for any g ∈ GH.

In particular, for any g1 ∈ GH

dH(e, g1) = min
u∈L2([0,1],H)

{‖u‖ : g1 = ϕu(1)}

and, by left invariance, we have dH(e, g1) = dH(e, g−1
1 ).

Remark 2.9. It is often helpful to think of GH as a manifold (to make this precise, one has 
to work in the category of Banach manifolds, see [9]). The inner product on H induces 
a right-invariant Riemannian metric on GH by

TgGH × TgGH � (U, V ) �→ 〈U ◦ g−1, V ◦ g−1〉H. (2.26)

Let dR denote the right-invariant Riemannian distance associated with this metric. Then 
the relation between dR and dH is

dH(g1, g2) = dR(g−1
1 , g−1

2 ). (2.27)

Consequently, due to the invariance properties, the two distances coincide when g2 = e.

The LDDMM approach to image registration consists of the following. We are given 
two images I0 and I1 belonging to L2(Ω). For any g ∈ GH, write ψ = g−1 and define

UI0,I1(g) = ‖I0 ◦ g−1 − I1‖L2(Ω) and ŨI0,I1(ψ) = ‖I0 ◦ ψ − I1‖L2(Ω). (2.28)

Then, for some parameter λ > 0, and positive constants α and β, we seek a diffeomor-
phism

g ∈ GH
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which is a solution to the following minimization problem

min
{(

λ‖I0 ◦ g−1 − I1‖αL2(Ω) + dH(g, e)β
)

: g ∈ GH
}
. (2.29)

We note that problem (2.29) is equivalent to solving

min
{(

λ‖I0 ◦ g−1 − I1‖αL2(Ω) + dH(g−1, e)β
)

: g ∈ GH
}

(2.30)

that is, with the above notation ψ = g−1,

min
{(

λ‖I0 ◦ ψ − I1‖αL2(Ω) + dH(ψ, e)β
)

: ψ ∈ GH
}
. (2.31)

The minimization problem (2.29) admits a solution. This follows from the proof of 
Theorem 21 in [9] and will be outlined in Section 5, see Theorem 5.1. It is essentially 
based on compactness and semicontinuity properties with respect to the following kind 
of convergence.

Definition 2.10. Given a sequence {gn}n∈N ⊂ GH, we say that gn weakly converges in 
GH to g, as n → ∞, if and only if there exists a constant C > 0 such that ‖Dgn‖L∞ ≤ C

and ‖Dg−1
n ‖L∞ ≤ C for any n ∈ N, and gn → g and (gn)−1 → g−1 uniformly on compact 

subsets of Ω.

It is easy to see that a weak limit to {gn}n∈N ⊂ GH, if it exists, is unique and that 
gn weakly converges to g if and only if g−1

n weakly converges to g−1.
We are now ready to describe our multiscale construction for the registration problem. 

Let us fix, as before, positive constants α, β and γ and let λn > 0 and an ≥ 0 for any 
n ∈ N. Again we assume that an ≤ an−1 for any n ≥ 1.

We let g0 be a minimizer of

min
{(

λ0[‖I0 ◦ g−1 − I1‖αL2(Ω) + a0dH(g, e)γ ] + dH(g, e)β
)

: g ∈ GH
}
, (2.32)

or, equivalently, let ψ0 = g−1
0 be a minimizer of

min
{(

λ0[‖I0 ◦ ψ − I1‖αL2(Ω) + a0dH(ψ, e)γ ] + dH(ψ, e)β
)

: ψ ∈ GH
}
. (2.33)

For the proofs, and to relate to the general framework in Section 4, it will be helpful to 
work with both minimization problems throughout.

Existence of minimizers will be proved in Section 5. By induction, there exists a 
minimizer gn, n ≥ 1, of

min
g∈GH

(
λn[‖I0 ◦ g̃−1

n−1 ◦ g−1 − I1‖αL2(Ω) + andH(g ◦ g̃n−1, e)γ ] + dH(g, e)β
)

(2.34)

where g̃0 = g0 and for any n ≥ 1 we denote by g̃n the composition



1026 K. Modin et al. / Advances in Mathematics 346 (2019) 1009–1066
g̃n = gn ◦ · · · ◦ g0.

We also let ψn = g−1
n be solution of

min
ψ∈GH

(
λn[‖I0 ◦ ψ̃n−1 ◦ ψ − I1‖αL2(Ω) + andH(ψ̃n−1 ◦ ψ, e)γ ] + dH(ψ, e)β

)
(2.35)

where ψ̃0 = ψ0 and for any n ≥ 1 we denote

ψ̃n = ψ0 ◦ · · · ◦ ψn = g̃−1
n .

We have that the sequence {gn}n∈N exists, however we can not guarantee that it is 
uniquely determined. By taking g = e, we have

‖I0 ◦ g̃−1
n − I1‖αL2(Ω) ≤ ‖I0 ◦ g̃−1

n − I1‖αL2(Ω) + andH(g̃n, e)γ ≤
‖I0 ◦ g̃−1

n−1 − I1‖αL2(Ω) + an−1dH(g̃n−1, e)γ for any n ≥ 1, (2.36)

so we can denote

ε0 = lim
n

(
‖I0 ◦ g̃−1

n − I1‖αL2(Ω) + andH(g̃n, e)γ
)1/α

and

δ0 = inf{‖I0 ◦ g−1 − I1‖L2(Ω) : g ∈ GH}.

Clearly we have that ε0 ≥ δ0.
The first result we have is a convergence of the corresponding images.

Theorem 2.11. Assuming (2.11) holds as before, then for the sequence of diffeomorphisms
g̃n constructed above we have ε0 = δ0 and we also have

lim
n

‖I0 ◦ g̃−1
n − I1‖L2(Ω) = inf{‖I0 ◦ g−1 − I1‖L2(Ω) : g ∈ GH} = δ0.

This result will be an immediate consequence of Theorem 4.4 in Section 4, where we 
will develop an extension of our generalized abstract formulation to a topological group 
setting.

We next address the question of convergence of the sequence {g̃n}n∈N. Let {ũn}n∈N

be a sequence in L2([0, 1], H) such that g̃n = ϕũn(1) and dH(g̃n, e) = ‖ũn‖. We will show 
in Section 5 that if the sequence {g̃n}n∈N, or one of its subsequences, converges weakly 
to some g̃∞ in GH, then g̃∞ is a solution to the following minimization problem

min{‖I0 ◦ g−1 − I1‖L2(Ω) : g ∈ GH} = min{UI0,I1(g) : g ∈ GH}. (2.37)

In fact, the following crucial lemma holds true.
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Lemma 2.12. If {g̃n}n∈N has a bounded subsequence, then (2.37) admits a solution. In 
particular, if {g̃n}n∈N has a bounded subsequence, then there exists a further subsequence 
{g̃nk

}k∈N such that, as k → ∞, g̃nk
converges to g̃∞ weakly, with g̃∞ a solution to (2.37).

Lemma 2.12 will be proved as part of Lemma 5.4. Here we point out that a solution to 
(2.37) is a registration map between the two images I0 and I1. Existence and uniqueness 
of such a solution will be further discussed in Section 5. Existence is equivalent to saying 
that there exists ĝ ∈ GH such that

‖I0 ◦ ĝ−1 − I1‖L2(Ω) = δ0 = min{‖I0 ◦ g−1 − I1‖L2(Ω) : g ∈ GH},

or, equivalently, that there exists ĝ ∈ GH solving the following minimization problem

min{dH(g, e) : g ∈ GH and ‖I0 ◦ g−1 − I1‖L2(Ω) = δ0} < +∞. (2.38)

We can think of ĝ as an optimal registration, since it is a registration whose distance 
from the identity is minimal.

We call Ĝ the set of solutions to (2.38), which is the set of optimal registrations. We 
have that Ĝ is closed and bounded with respect to the topology induced by the distance 
in GH and it is sequentially compact with respect to the weak convergence in GH. The 
same topological properties are shared by Ĝ−1 = {g−1 : g ∈ Ĝ}.

Indeed, a stronger statement holds. If {g̃n}n∈N, or one of its subsequences, converges 
weakly to some g̃∞ in GH, then g̃∞ ∈ Ĝ, thus it is an optimal registration between the 
two images I0 and I1 and we also have a multiscale decomposition of the diffeomorphism 
g̃∞:

g̃∞ = lim
k

g̃nk
= lim

k
gnk

◦ · · · ◦ g0,

where the limit is in the sense of Definition 2.10.
In view of Lemma 2.12, we need to find conditions under which we have boundedness 

of {g̃n}n∈N or of one of its subsequences. Clearly a necessary condition is that a solution 
to (2.37) does exist. Our main and surprising result is that, in the setting above, this is 
also a sufficient condition, as shown in the theorem below.

Theorem 2.13. Assume that (2.15) holds.
Then the sequence of diffeomorphisms {g̃n}n∈N constructed above is bounded if and 

only if a solution to (2.37) exists.
In this case, there exists a subsequence {g̃nk

}k∈N and g̃∞ ∈ Ĝ such that, as k → ∞, 
g̃nk

converges to g̃∞ weakly, that is, in particular, g̃nk
→ g̃∞ and (g̃nk

)−1 → (g̃∞)−1

uniformly on compact subsets of Ω.

A more complete version of this result is stated in Theorem 5.12, which will be proved 
in Section 5.
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3. The general abstract results in a Banach setting

In this section we prove the general results on the multiscale procedure in the Banach 
setting, in particular we prove Theorems 2.1, 2.4 and 2.5

We then consider the application of the abstract procedure to the (BV, L2) decompo-
sition, in particular we prove Theorem 2.2.

3.1. The multiscale approach: general abstract results

We begin by proving Theorem 2.1.

Proof of Theorem 2.1. Clearly we have that ε0 ≥ δ0. We need to show that ε0 ≤ δ0. By 
contradiction, let us assume that δ0 < ε0. There exists 0 < C1 < 1 such that

δ0 < C
1/α
1 ε0 < ε0, (3.1)

thus there exists σ ∈ E such that

d(N̂ ,N (σ)) ≤ C
1/α
1 ε0 and |σ| < +∞. (3.2)

This is due to the density assumption 3) on page 1013 and to the continuity of N .
Then, recalling that σ0 = σ̃0,(

λ0[d(N̂ ,N (σ̃0))α] + |σ0|β
)
≤
(
λ0[d(N̂ ,N (σ))α] + |σ|β

)
.

Analogously, for any n ≥ 1, choosing σ = σ − σ̃n−1, we have(
λn[d(N̂ ,N (σ̃n))α] + |σn|β

)
≤
(
λn[d(N̂ ,N (σ))α] + |σ − σ̃n−1|β

)
. (3.3)

Hence, for any n ≥ 1,

λn(1 − C1)[d(N̂ ,N (σ̃n))α] + |σn|β ≤ |σ − σ̃n−1|β . (3.4)

From (3.4), we obtain that for any n ≥ 1,

|σ − σ̃n| ≤ |σ − σ̃n−1| + |σn| ≤ 2|σ − σ̃n−1|.

Let us call C0 = |σ − σ̃0|, then

|σ − σ̃n| ≤ C02n for any n ≥ 0.

Therefore, again using (3.4),

λn(1 − C1)d(N̂ ,N (σ̃n))α ≤
(
C02n−1)β for any n ≥ 1,
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that is

λn(1 − C1)d(N̂ ,N (σ̃n))α ≤ C̃02βn for any n ≥ 1, (3.5)

where C̃0 = (C0/2)β . Hence, for any n ≥ 1,

(1 − C1)εα0 ≤ (1 − C1)d(N̂ ,N (σ̃n))α ≤ C̃0
2βn

λn

which leads to a contradiction if lim supn
2βn

λn
= 0.

The case in which lim supn
2βn

λn
= C̃, 0 < C̃ < +∞, requires the following argument. 

For some n1 ≥ 1 and for any n ≥ n1 we have 2βn/λn ≤ C̃ + 1.
Then we note that, for any n ≥ n1,

λn(1 − C1)εα0 ≤ |σ − σ̃n−1|β − |σn|β .

Let a, 0 < a < 1, to be fixed later. If, for some n ≥ n1, |σn|β ≥ a|σ − σ̃n−1|β , then

λn(1 − C1)εα0 ≤ (1 − a)|σ − σ̃n−1|β ≤ (1 − a)C̃02βn,

therefore

(1 − C1)εα0 ≤ (1 − a)C̃0(C̃ + 1).

Hence we can find a0, 0 < a0 < 1, such that if a ≥ a0 then (1 −a)C̃0(C̃+1) < (1 −C1)εα0 . 
This implies that for any n ≥ n1 we have that

|σn| ≤ a
1/β
0 |σ − σ̃n−1|

or in other words there exists b0, 1 < b0 < 2, such that

|σ − σ̃n| ≤ b0|σ − σ̃n−1| for any n ≥ n1.

We conclude that

lim
n

|σ − σ̃n−1|β
λn

= lim
n

2βn

λn

|σ − σ̃n−1|β
2βn = 0

and this leads to a contradiction. �
In Subsection 2.2 we slightly modified our multiscale approach and studied conditions 

that guarantee convergence of {σ̃n}n∈N, or of one of its subsequences. Before dealing with 
the proof of the second abstract formulation, we consider an easy although interesting 
consequence of Theorem 2.1. In general, it is difficult to guarantee boundedness, in X, 
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of the sequence {σ̃n}n∈N. A related counterexample is given in the second version of 
Example A.3. However this may be obtained through a mild coercivity condition as it is 
shown in the next result.

Proposition 3.1. Let the assumptions of Theorem 2.1 be satisfied. Let dX be any metric 
on X, possibly different from the one induced by the norm on X. We also fix σ ∈ E. 
We assume that N satisfies the following mild coercivity condition. Assume that for any 
ε > 0 there exists R > 0 such that

d(N̂ ,N (σ)) ≥ δ0 + ε for any σ ∈ E such that dX(σ, σ) ≥ R. (3.6)

Then {σ̃n}n∈N is bounded with respect to the metric dX, that is, there exists a constant 
C such that dX(σ̃n, σ) ≤ C for any n ∈ N.

If furthermore, for any C ∈ R, {σ ∈ E : dX(σ, σ) ≤ C} is relatively sequentially 
compact in X, with respect to the metric induced by the norm on X, we conclude that a 
solution to (2.12) does exist and that {σ̃n}n∈N converges, up to a subsequence, to some 
σ̃∞, σ̃∞ solution to (2.12).

Proof. Immediate by Theorem 2.1, since limn d(N̂ , N (σ̃n)) = δ0. �
Let us now proceed with the proofs of the results stated in Subsection 2.2.

Proof of Theorem 2.4. We need to show that ε0 ≤ δ0. By contradiction, let us assume 
that δ0 < ε0. Hence there exist 0 < C1 < C2 < 1 such that

δ0 < C
1/α
1 ε0 < C

1/α
2 ε0 < ε0

and σ ∈ E satisfying (3.2).
Then, recalling that σ0 = σ̃0,(

λ0[d(N̂ ,N (σ̃0))α + a0|σ̃0|γ ] + |σ0|β
)
≤
(
λ0[d(N̂ ,N (σ))α + a0|σ|γ ] + |σ|β

)
.

Analogously, for any n ≥ 1, choosing σ = σ − σ̃n−1, we have

(
λn[d(N̂ ,N (σ̃n))α + an|σ̃n|γ ] + |σn|β

)
≤(

λn[d(N̂ ,N (σ))α + an|σ|γ ] + |σ − σ̃n−1|β
)
. (3.7)

For some n ≥ 1 and for any n ≥ n, we have that

an|σ|γ ≤ (C2 − C1)εα0

since an goes to zero as n → ∞.
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Hence, for any n ≥ n,

λn(1 − C2)[d(N̂ ,N (σ̃n))α + an|σ̃n|γ ] + |σn|β ≤ |σ − σ̃n−1|β . (3.8)

From (3.8), we obtain that for any n ≥ n,

|σ − σ̃n| ≤ |σ − σ̃n−1| + |σn| ≤ 2|σ − σ̃n−1|.

Then the proof concludes analogously to the proof of Theorem 2.1. �
We conclude this subsection with the proof of Theorem 2.5.

Proof of Theorem 2.5. First of all we note that |σ0| = |σ̃0| ≤ |σ̂|. Then we use (3.7) with 
σ replaced by σ̂ for any n ≥ 1 and we have the following two cases. In the first one we 
have that |σ̃n| ≤ |σ̂|, in the second we have that |σ̃n| > |σ̂|, hence |σn| ≤ |σ̂ − σ̃n−1|.

Let us now fix n ≥ 1. If we have that |σ̃n| ≤ |σ̂|, then we also have |σ̂ − σ̃n| ≤ 2|σ̂|. 
Otherwise, let us consider m, 0 ≤ m < n, the last integer for which the first case happens. 
We immediately deduce, as before, that

|σ̂ − σ̃n| ≤ 2n−m(2|σ̂|) ≤ 2n+1|σ̂|.

In any case, we conclude that for any n ≥ 0

|σ̂ − σ̃n| ≤ 2n+1|σ̂| and |σ̃n| ≤ (2n+1 + 1)|σ̂|. (3.9)

Let us assume that there exists h > 0 such that lim supn |σ̃n|γ ≥ (|σ̂|γ + h). Then we 
can find a subsequence nk such that for any k ≥ 1 we have

|σ̃nk
|γ ≥ (|σ̂|γ + h/2).

Therefore,

λnk
ank

(h/2) + |σnk
|β ≤ |σ̂ − σ̃nk−1|β ≤ 2βnk |σ̂|β

which leads to a contradiction if (2.15) holds.
Therefore we may conclude that

lim sup
n

|σ̃n| ≤ |σ̂|. (3.10)

The rest of the proof easily follows. �
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3.2. The (BV, L2) case: proof of Theorem 2.2 and related results

The homogeneous BV space on RN , N ≥ 1, is defined as follows. We say that u ∈
BV (RN ) if Du, its gradient in the distributional sense, is a bounded vector valued Radon 
measure on RN and u satisfies a suitable condition at infinity. Namely, if N = 1, then 
BV (R) ⊂ L∞(R), with continuous immersion, and the condition at infinity here is just 
that (a good representative of) u ∈ BV (R) satisfies limt→−∞ u(t) = 0. If N ≥ 2, we 
require that u ∈ BV (RN ) vanishes at infinity in a weak sense. We note that BV (RN ) ⊂
LN/(N−1)(RN ), with continuous immersion, and u belonging to LN/(N−1)(RN ) already 
guarantees that u vanishes at infinity in a weak sense. Finally, we endow the homogeneous 
BV (RN ) space with the norm given by the total variation of Du, namely

‖u‖BV (RN ) = |Du|(RN ).

We refer to [24, Section 1.12] for further details.
The multiscale procedure developed in [42] is the following. We fix f ∈ L2(RN ), 

N ≥ 1, and positive numbers λn for any n ∈ N. Let u0 be the solution to

min
{(

λ0‖f − v‖2
L2(RN ) + ‖v‖BV (RN )

)
: v ∈ L2(RN )

}
. (3.11)

Lemma 1 of [24, Section 1.12] guarantees that such a minimization problem admits a 
unique solution (uniqueness being ensured by strict convexity of the functional to be 
minimized). Then, by induction, let un, n ≥ 1, be the solution to

min
{(

λn‖f − u0 − u1 − . . .− un−1 − v)‖2
L2(RN ) + ‖v‖BV (RN )

)
: v ∈ L2(RN )

}
.

(3.12)

Then we have the following hierarchical decomposition.

Theorem 3.2. Let f ∈ L2(RN ), N ≥ 1, and assume that (2.6) holds.
Then we have the following (BV, L2) hierarchical decomposition of f

f =
+∞∑
j=0

uj (3.13)

where the convergence is in the strong sense in L2(RN ).
Furthermore, if N = 2, we also have the following energy equality

‖f‖2
L2(RN ) =

+∞∑
j=0

[
1
λj

‖uj‖BV (RN ) + ‖uj‖2
L2(RN )

]
. (3.14)
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Proof. Let X = L2(RN ) with its usual norm, E = X, Y = L2(RN ) and N = Id. Let 
N̂ = f ∈ L2(RN ). We set | · | = ‖ · ‖BV (RN ) and α = 2 and β = 1. Finally we note that 
δ0 = 0. Then the decomposition is an immediate consequence of Theorem 2.1.

The restriction to N = 2 for the energy equality is due to the fact that we need that 
BV (RN ) ⊂ L2(RN ), with continuous immersion. Its proof is already contained in [42, 
Theorem 2.2] and exploits arguments developed in [24], which we will recall in the proof 
of the next result, Theorem 3.3. �

Let us note that we have proved, and actually extended to any space dimension N ≥ 1, 
Theorem 2.2. We can further extend Theorem 3.2 to bounded domains as follows.

Theorem 3.3. Let Ω ⊂ R
N , N ≥ 1, be a bounded open set with Lipschitz boundary. Let 

f ∈ L2(Ω) and assume that (2.6) holds. Let us construct the sequence {uj}+∞
j=0 as before, 

using (3.11) and (3.12) with RN replaced by Ω.
Then we have the following (BV, L2) hierarchical decomposition of f

f =
+∞∑
j=0

uj (3.15)

where the convergence is in the strong sense in L2(Ω).
Furthermore, if N = 2, we also have the following energy equality

‖f‖2
L2(Ω) =

+∞∑
j=0

[
1
λj

‖uj‖BV (Ω) + ‖uj‖2
L2(Ω)

]
. (3.16)

Proof. We begin by showing that, for any positive λ and f̃ ∈ L2(Ω), there exists a unique 
minimizer to

min
{
λ‖f̃ − w‖2

L2(Ω) + ‖w‖BV (Ω) : w ∈ L2(Ω)
}
. (3.17)

This guarantees that the sequence {uj}+∞
j=0 exists and it is uniquely defined.

The existence and uniqueness of a solution to (3.17) is standard and we sketch here 
the argument for the convenience of the reader.

A minimizing sequence {wn}n∈N is clearly uniformly bounded in L2(Ω), hence in 
L1(Ω), and their BV norms are uniformly bounded as well. Then, up to a subsequence, 
wn converges to w ∈ L2(Ω) weakly in L2(Ω) and strongly in L1(Ω). The existence of 
the minimum is guaranteed by the lower semicontinuity of the functional with respect 
to this kind of convergence. Uniqueness of the solution of the minimum problem follows 
from the fact that the functional is strictly convex.

The hierarchical decomposition follows again from Theorem 2.1 as in the proof of 
Theorem 3.2 by replacing RN with Ω.
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Regarding the energy equality, the restriction to N = 2 is again due to the fact 
that we need that BV (Ω) ⊂ L2(Ω), with continuous immersion, and the proof relies on 
arguments developed in [24]. In fact, we can define, for any v ∈ L2(Ω), the following 
norm

‖v‖∗ = sup

⎧⎨
⎩
∫
Ω

vh : ‖h‖BV (Ω) ≤ 1

⎫⎬
⎭ .

Using the reasoning developed in [24] for the R2 case, one can show one has the following 
characterization of the solution u to (3.17) and of v = f̃ − u. If ‖f̃‖∗ ≤ 1

2λ , then u = 0
and v = f̃ . If ‖f̃‖∗ ≥ 1

2λ , then

‖v‖∗ = 1
2λ and

∫
Ω

vu = 1
2λ‖u‖BV (Ω).

Note that the second equality is true in both cases. Moreover, it immediately follows 
that

‖f̃‖2
L2(Ω) = ‖u + v‖2

L2(Ω) = ‖u‖2
L2(Ω) + 1

λ
‖u‖BV (Ω) + ‖v‖2

L2(Ω). (3.18)

By induction, we conclude that for any j0 ∈ N we have

‖f‖2
L2(Ω) =

⎛
⎝ j0∑

j=0
‖uj‖2

L2(Ω) + 1
λj

‖uj‖BV (Ω)

⎞
⎠+ ‖vj0‖2

L2(Ω).

By (3.15), we infer that ‖vj0‖2
L2(Ω) goes to zero as j0 goes to infinity, thus (3.16) is 

proved. �
Remark 3.4. Let Ω ⊂ R

N , N ≥ 1, be a bounded open set with Lipschitz boundary. 
Then the hierarchical decomposition (3.15) of Theorem 3.3 still holds if we replace the 
‖ · ‖BV (Ω) norm with the seminorm | · |BV (Ω) in the minimization problem (3.17) and, 
correspondingly, in those leading to the construction of the sequence {uj}+∞

j=0 (which is 
still uniquely determined). However, in this case (3.16) is not guaranteed.

In fact, it is enough to use in Theorem 2.1 as | · | the seminorm | · |BV (Ω) instead of 
the norm ‖ · ‖BV (Ω). We note that the regularization by the BV seminorm is the one 
usually employed in the Rudin–Osher–Fatemi denoising model.

4. The multiscale approach in a topological group setting

In this section we extend the abstract results to a different setting, namely the one of 
topological groups. This extension is essential in order to apply the multiscale procedure 
to image registration as described in Subsection 2.4.
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Let G be a group with multiplication denoted by ·. The identity element is denoted e. 
We endow G with a left-invariant distance d such that G with that distance is a complete 
metric space. By left-invariance we mean

d(ψ0, ψ1) = d(ψ · ψ0, ψ · ψ1) for any ψ0, ψ1, ψ ∈ G. (4.1)

Let us assume that there exists a notion of convergence on G, which for simplicity we 
call weak convergence in G and we denote with ⇀, satisfying the following properties:

a) if the weak limit exists, it is unique;
b) the weak convergence is left-invariant, that is, if ψn ⇀ ψ∞ as n → ∞, then for any 

ψ ∈ G we have that ψ · ψn ⇀ ψ · ψ∞;
c) if, as n → ∞, ψn converges to ψ∞ in the distance d, then ψn ⇀ ψ∞.
d) any bounded subset of G, with respect to the distance d, is relatively sequentially 

compact with respect to the weak convergence in G;
e) the distance d is sequentially lower semicontinuous on G, with respect to the weak 

convergence in G, in the following sense

d(ψ∞, e) ≤ lim inf
n

d(ψn, e) if ψn ⇀ ψ∞ as n → ∞.

Let us note that, by assumption b), assumption e) is equivalent to the statement that, 
for any ψ ∈ G,

d(ψ∞, ψ) ≤ lim inf
n

d(ψn, ψ) if ψn ⇀ ψ∞ as n → ∞.

An interesting example of this setting, as anticipated earlier in Subsection 2.4 and 
developed in the next Section 5, is the image registration problem. Another simpler 
example is the following.

Example 4.1. We may consider G = X, where X is a reflexive Banach space, with norm 
‖ · ‖ = ‖ · ‖X . Then G is a group with respect to the sum, that is x1 · x2 = x1 + x2 and, 
obviously, e = 0, that is, d(x, e) = ‖x‖.

As weak convergence in G we consider the weak convergence in the reflexive Banach 
space X. Then all the previously stated properties are immediately satisfied.

Let us assume that E ⊂ G is sequentially closed with respect to the weak convergence 
in G. Let Y be a metric space with distance dY . Given N : E → Y , and N̂ ∈ Y , we 
assume that the function E � ψ �→ d(N̂ , N (ψ)) is sequentially lower semicontinuous 
with respect to the weak convergence in G.

Let us fix positive constants α, β and γ and let λn > 0 and an ≥ 0 for any n ∈ N. We 
assume that an ≤ an−1 for any n ≥ 1. We begin with the following proposition.
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Proposition 4.2. There exists a minimizer ψ0 solving

min
{(

λ0[(dY (N̂ ,N (ψ)))α + a0d(ψ, e)γ ] + d(ψ, e)β
)

: ψ ∈ G
}
. (4.2)

By induction, there exists a minimizer ψn, n ≥ 1, solving

min
ψ∈G

(
λn[(dY (N̂ ,N (ψ̃n−1 · ψ)))α + and(ψ̃n−1 · ψ, e)γ ] + d(ψ, e)β

)
(4.3)

where ψ̃0 = ψ0 and for any n ≥ 1 we set by induction

ψ̃n = ψ̃n−1 · ψn.

Remark 4.3. We have that the sequence {ψn}n∈N exists, however we can not guarantee 
that it is uniquely determined.

Proof. The existence of a minimizer for (4.2) is a simple consequence of the direct method 
of Calculus of Variations.

We show that there exists ψ1, solution to (4.3) with n = 1. Again we use the direct 
method. We consider ψm ∈ G, m ∈ N, a minimizing sequence. Clearly, ψm is bounded 
in G, thus it admits a weakly converging subsequence, which we do not relabel. Let ψ1
be its weak limit. We need to prove that ψ1 is a minimizer for (4.3), with n = 1. By 
assumption b), we have that

dY (N̂ ,N (ψ0 · ψ1)) ≤ lim inf
m

dY (N̂ ,N (ψ0 · ψm)).

It remains to show that

d(ψ0 · ψ1, e) ≤ lim inf
m

d(ψ0 · ψm, e)

which is obviously true since, by left invariance of the distance and assumption e),

d(ψ0 · ψ1, e) = d(ψ1, ψ
−1
0 ) ≤ lim inf

m
d(ψm, ψ−1

0 ) = lim inf
m

d(ψ0 · ψm, e).

In a similar fashion, by induction, we prove the existence of ψn, n ≥ 1. �
By taking ψ = e, we infer that

(dY (N̂ ,N (ψ̃n)))α ≤ (dY (N̂ ,N (ψ̃n)))α + and(ψ̃n, e)γ ≤

(dY (N̂ ,N (ψ̃n−1)))α + an−1d(ψ̃n−1, e)γ for any n ≥ 1. (4.4)

Let us denote
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ε0 =
(
lim
n

(
(dY (N̂ ,N (ψ̃n)))α + and(ψ̃n, e)γ

))1/α

and

δ0 = inf{dY (N̂ ,N (ψ)) : ψ ∈ G}.

Clearly we have that ε0 ≥ δ0.
In the following theorem we prove convergence in the space of images.

Theorem 4.4. We assume that (2.11) holds. Then ε0 = δ0 and we also have

lim
n

dY (N̂ ,N (ψ̃n)) = δ0.

Proof. The proof follows the one of Theorem 2.4. The only difference is that we replace 
the additive structure of the Banach space with the operation of the group. We sketch 
the proof to show how to handle such a difference.

We need to show that ε0 ≤ δ0. By contradiction, let us assume that δ0 < ε0. Hence 
there exist 0 < C1 < C2 < 1 such that

δ0 < C
1/α
1 ε0 < C

1/α
2 ε0 < ε0.

Therefore, there exists ψ ∈ G such that

dY (N̂ ,N (ψ)) ≤ C
1/α
1 ε0 and d(ψ, e) < +∞.

Then, recalling that ψ0 = ψ̃0,

(
λ0[(dY (N̂ ,N (ψ̃0)))α + a0d(ψ̃0, e)γ ] + d(ψ0, e)β

)
≤(

λ0[(dY (N̂ ,N (ψ)))α + a0d(ψ, e)γ ] + d(ψ, e)β
)
.

Analogously, for any n ≥ 1, choosing ψ = ψ̃−1
n−1 · ψ, we have

(
λn[(dY (N̂ ,N (ψ̃n)))α + and(ψ̃n, e)γ ] + d(ψn, e)β

)
≤(

λn[(dY (N̂ ,N (ψ)))α + and(ψ, e)γ ] + d(ψ̃−1
n−1 · ψ, e)β

)
. (4.5)

For some n ≥ 1 and for any n ≥ n, we have that

and(ψ, e)γ ≤ (C2 − C1)εα0

since an goes to zero as n → ∞. Hence, for any n ≥ n,
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λn(1 − C2)[(dY (N̂ ,N (ψ̃n)))α + and(ψ̃n, e)γ ] + d(ψn, e)β ≤ d(ψ̃−1
n−1 · ψ, e)β . (4.6)

Therefore, for any n ≥ n, we have that

d(ψ̃−1
n · ψ, e) = d(ψ̃−1

n−1 · ψ,ψn) ≤ d(ψ̃−1
n−1 · ψ, e) + d(ψn, e) ≤ 2d(ψ̃−1

n−1 · ψ, e).

Then the proof may be concluded by adapting the arguments of the proof of Theo-
rem 2.1. �

Let us now consider the sequence {ψ̃n}n∈N. If the sequence {ψ̃n}n∈N, or one of its 
subsequences, converges weakly in G to some ψ̃∞, then ψ̃∞ is a solution to the following 
minimization problem

min{dY (N̂ ,N (ψ)) : ψ ∈ E}. (4.7)

Therefore, we have the following immediate remark.

Remark 4.5. If {ψ̃n}n∈N has a bounded subsequence, then (4.7) admits a solution. In 
particular, if {ψ̃n}n∈N has a bounded subsequence, then there exists a further subse-
quence {ψ̃nk

}k∈N such that, as k → ∞, ψ̃nk
converges weakly to ψ̃∞ in G, where ψ̃∞

solves (4.7).

Let us now investigate which conditions allow boundedness of {ψ̃n}n∈N or of one of 
its subsequences. Clearly a necessary condition is that a solution to (4.7) does exist. We 
shall show that this is also a sufficient condition, provided (2.15) holds.

Let us assume that (4.7) admits a solution. This means that there exists ψ̂ ∈ G such 
that

dY (N̂ ,N (ψ̂)) = δ0 = min{dY (N̂ ,N (ψ)) : ψ ∈ G}.

It is important to note that this is equivalent to say that there exists ψ̂ ∈ G such that ψ̂
solves the following minimization problem

min{d(ψ, e) : ψ ∈ G and dY (N̂ ,N (ψ)) = δ0} < +∞. (4.8)

We call Ĝ the set of solutions to (4.8). We note that Ĝ is closed and bounded with 
respect to the topology induced by the distance in G and it is sequentially compact with 
respect to the weak convergence in G.

Then we can prove the following result.

Theorem 4.6. Let us assume that (2.15) holds and that there exists a solution ψ̂ of (4.7)
or, equivalently, of(4.8).

Then, {ψ̃n}n∈N is bounded and, up to a subsequence, ψ̃n converges weakly to ψ̃∞ where 
ψ̃∞ is a (possibly different from ψ̂) solution to (4.8), that is,
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dY (N̂ ,N (ψ̃∞)) = δ0 and d(ψ̃∞, e) = d(ψ̂, e).

Moreover, we have that

lim
n

d(ψ̃n, e) = d(ψ̂, e).

Proof. Assuming that there exists ψ̂, solution to (4.8), first of all we note that d(ψ0, e) =
d(ψ̃0, e) ≤ d(ψ̂, e). Then we use (4.5) with ψ replaced by ψ̂ for any n ≥ 1 and, by using 
the argument developed in the proof of Theorem 2.5, we obtain that

lim sup
n

d(ψ̃n, e) ≤ d(ψ̂, e). (4.9)

By (4.9) we have that, up to a subsequence, ψ̃n weakly converges to ψ̃∞ in G. Then 
by Theorem 4.4 and the lower semicontinuity properties of N with respect to weak 
convergence in G, we infer that ψ̃∞ satisfies dY (N̂ , N (ψ̃∞)) = δ0. We also have that, by 
definition of ψ̂,

d(ψ̂, e) ≤ d(ψ̃∞, e) ≤ lim sup
n

d(ψ̃n, e) ≤ d(ψ̂, e).

By a similar reasoning it is fairly easy to conclude that

lim
n

d(ψ̃n, e) = d(ψ̃∞, e) = d(ψ̂, e).

The proof is concluded. �
We conclude this section by developing these results in the simple setting of Exam-

ple 4.1. The much more interesting application to the image registration problem will be 
studied in Section 5.

4.1. The special case of a reflexive Banach space

We consider the setting of Example 4.1, that is G = X, where X is a reflexive Banach 
space, with norm ‖ · ‖ = ‖ · ‖X . Then G is a group with respect to the sum, that is 
x1 · x2 = x1 + x2 and, obviously, e = 0, that is, d(x, e) = ‖x‖.

As weak convergence in G we consider the weak convergence in the reflexive Banach 
space X and we assume that E ⊂ X is sequentially closed with respect to the weak 
topology of X.

As before, we consider Y to be a metric space with distance dY , and we consider 
N : E → Y such that E � σ �→ d(N̂ , N (σ)) is sequentially lower semicontinuous with 
respect to the weak convergence in X.

Let σ0 be a solution to

min
{(

λ0[d(N̂ ,N (σ))α + a0‖σ‖γ ] + ‖σ‖β
)

: σ ∈ E
}
,
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and, by induction, let σn, n ≥ 1, be a solution to

min
{(

λn[d(N̂ ,N (σ̃n−1 + σ))α + an‖σ̃n−1 + σ‖γ ] + ‖σ‖β
)

: σ̃n−1 + σ ∈ E
}

where σ̃0 = σ0 and for any n ≥ 1 we denote

σ̃n =
n∑

j=0
σj .

Let us note that (4.7) has a solution if and only if the following minimization problem 
also admits a solution

min{‖σ‖ : σ ∈ E and d(N̂ ,N (σ)) = δ0} < +∞. (4.10)

We call Ê the set of solutions to (4.10) and we note that it is closed and bounded with 
respect to the strong topology of X and it is sequentially compact with respect to the 
weak convergence in X.

Then we have the following result.

Theorem 4.7. We assume that (2.11) holds. Then we have that

lim
n

d(N̂ ,N (σ̃n)) = δ0.

If we further assume that (2.15) holds and that there exists a solution σ̂ of (4.7)
or, equivalently, of (4.10), then, up to a subsequence, σ̃n converges weakly to σ̃∞ where 
σ̃∞ is a (possibly different from σ̂) solution to (4.10), that is d(N̂ , N (σ̃∞)) = δ0 and 
‖σ̃∞‖ = ‖σ̂‖. Moreover, we have that

lim
n

‖σ̃n‖ = ‖σ̂‖.

Finally, if X is such that weak convergence and convergence of the norm imply strong 
convergence, for instance if X is a Hilbert space, we have a stronger result. In fact, then 
σ̃n converges, up to a subsequence, to σ̃∞ not only weakly but also strongly and

lim
n

dist(σ̃n, Ê) = 0. (4.11)

5. The multiscale approach for image registration

Throughout this section we use the notation introduced in Subsection 2.4.
We begin by stating and proving the following existence result, which follows from 

arguments of [9].
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Theorem 5.1. The minimization problem (2.29), that is,

min
{(

λ‖I0 ◦ g−1 − I1‖αL2(Ω) + dH(g, e)β
)

: g ∈ GH
}
,

admits a solution.

We outline the strategy for proving Theorem 5.1, which follows the proof of The-
orem 21 in [9] and it is based on the properties of weak convergence as defined in 
Definition 2.10. The first one is a continuity property, see for instance [9] for a proof.

Proposition 5.2. Let H be an admissible Hilbert space. Let us fix I0 and I1 in L2(Ω).
Let {gn}n∈N be a sequence in GH and assume that, as n → ∞, gn weakly converges 

to g∞. Then UI0,I1(gn) → UI0,I1(g).
Analogously, let {ψn}n∈N be a sequence in GH. Assume that, as n → ∞, ψn weakly 

converges to ψ∞. Then ŨI0,I1(ψn) → ŨI0,I1(ψ).

The required compactness is provided by the following well-known result, see again 
[9] for a sketch of the proof.

Proposition 5.3. Let H be an admissible Hilbert space.
Let {un}n∈N be a sequence in L2([0, 1], H) and u ∈ L2([0, 1], H). If, as n → ∞, un

weakly converges to u in L2([0, 1], H), then ϕun(1) weakly converges to ϕu(1).

As a consequence we can show the following.

Lemma 5.4. Let {gn}n∈N be a sequence in GH.
If {gn}n∈N is bounded in GH, then there exists a constant C > 0 such that ‖Dgn‖L∞ ≤

C and ‖Dg−1
n ‖L∞ ≤ C for any n ∈ N. Furthermore, there exists a subsequence {gnk

}k∈N

and g ∈ GH such that gnk
converges weakly to g as k → ∞.

If either limn dH(gn, g) = 0 or limn dH(g−1
n , g−1) = 0, for some g ∈ GH, then, as 

n → ∞, gn converges weakly to g.

Proof. Let un ∈ L2([0, 1], H), n ∈ N, be such that gn = ϕun(1) and dH(gn, e) = ‖un‖. 
If {gn}n∈N is bounded in GH, then {un}n∈N is bounded in L2([0, 1], H). Therefore, the 
uniform boundedness of Dgn, n ∈ N, follows from Theorem 8.9 in [45]. We also have a 
subsequence {unk

}k∈N weakly converging in L2([0, 1], H) and the first part of the claim 
follows by Proposition 5.3.

Regarding the second part of the claim, assume that limn dH(gn, g) = 0 and let 
wn ∈ L2([0, 1], H), n ∈ N, be such that g−1 ◦ gn = ϕwn(1) and ‖wn‖ → 0 as n → ∞. 
Again by the previous proposition, we have that g−1 ◦ gn and (gn)−1 ◦ g converges to the 
identity e uniformly on compact subsets of Ω. Therefore it is not difficult to prove that 
the claim follows. �
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Finally, a lower semicontinuity results is needed and it is included in the following.

Lemma 5.5. Let {gn}n∈N be a sequence in GH. Assume that, as n → ∞, gn weakly 
converges to g∞. Then

dH(g∞, e) ≤ lim inf
n

dH(gn, e).

Proof. Without loss of generality, we pick vn in L2([0, 1], H) such that gn = ϕvn(1) and 
dH(gn, e) = ‖vn‖. Up to a subsequence, we may assume that

lim inf
n

dH(gn, e) = lim
k

dH(gnk
, e) = lim

k
‖vnk

‖

and also that the subsequence {vnk
}k∈N is weakly converging to v∞, as k → ∞. By 

Proposition 5.3, we immediately infer that g∞ = ϕv∞(1) and we have

dH(g∞, e) ≤ ‖v∞‖ ≤ lim inf
k

‖vnk
‖

thus the result is proved. �
Proof of Theorem 5.1. It is convenient to prove the existence of a solution to (2.31). It 
is immediate to verify, by the direct method in the Calculus of Variations, that Propo-
sition 5.2 and Lemmas 5.4 and 5.5 imply that the minimization problem (2.31) admits 
a solution. Therefore also (2.29) admits a solution and the theorem is proved. �

In order to apply the procedure described in Section 4, for G = GH and d = dH, with 
H admissible, we need to show that the weak convergence defined in Definition 2.10
satisfies assumptions a)—e) of the abstract weak convergence used in Section 4.

It is easy to see that assumptions a) and b) are satisfied. Then assumptions c) 
and d) are satisfied as a consequence of Lemma 5.4. Finally, assumption e) follows from 
Lemma 5.5. Thus all the assumptions on weak convergence stated in the abstract setting 
are satisfied.

Before passing to the multiscale procedure, we wish to discuss an important and 
significant choice for the admissible H. We follow the results and the notation used 
in [10]. We fix s > N/2 + 1 and we call

Ds(RN ) = {g ∈ e + Hs(RN ,RN ) : g is bijective and g−1 ∈ e + Hs(RN ,RN )},

where Hs is the usual Sobolev space. We have that Ds(RN ) − e is an open subset of 
Hs(RN , RN ) and that the inversion operation is continuous, although not smooth, in 
Ds(RN ). We call Ds(RN )0 the connected component of the identity in Ds(RN ). We 
further note that if we choose H = Hs(RN , RN ) = Hs, then H is admissible. Then we 
have the following result.
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Theorem 5.6. Let H = Hs(RN , RN ) = Hs, with s > N/2 + 1. Then we have that

GHs = Ds(RN )0. (5.1)

Furthermore, let us consider a sequence {gn}n∈N ⊂ GHs and g ∈ GHs , and corre-
sponding un ∈ L2([0, 1], Hs) such that gn = ϕun(1), for any n ∈ N, and u ∈ L2([0, 1], Hs)
such that ϕu(1) = g. The following properties are satisfied.

If, as n → ∞, un converges to u strongly in L2([0, 1], Hs) then gn converges to g and 
g−1
n converges to g−1, in both cases in Hs.

We have that dHs(gn, g) converges to 0, as n → ∞, if and only if g−1
n converges to 

g−1 in Hs.
Finally, if, as n → ∞, un converges to u strongly in L2([0, 1], Hs) then gn converges 

to g and g−1
n converges to g−1 in the distance dHs .

Proof. The equality in (5.1) is proved in [10, Theorem 8.3]. For the convenience of the 
reader we sketch the proof. One inclusion follows immediately by the continuity of the 
flow proved in [10, Theorem 4.4] that implies that GHs ⊂ Ds(RN )0. The reverse inclusion 
is proved as follows. Since Ds(RN ) − e is an open subset of Hs(RN , RN ), we can take U
a convex neighborhood around e that is contained in Ds(RN )0. Then, for any g ∈ U we 
consider the path in U connecting e to g given by ϕ(t) = (1 −t)e +tg, 0 ≤ t ≤ 1. We note 
that ϕ(t) = ϕu(t) where u(t) = (g − e) ◦ ϕ(t)−1. Using the continuity of the inversion 
operation in Ds(RN ), it is not difficult to show that [0, 1] � t �→ ϕ(t)−1 is a continuous 
map in Hs(RN , RN ), therefore by Lemma 2.2 in [10] we infer that u ∈ L∞([0, 1], Hs), 
therefore U ⊂ GHs . Since GHs is a group, and again by [10, Lemma 2.2], we conclude 
that Ds(RN )0 ⊂ GHs .

The second part of the thesis follows immediately again by [10, Theorem 4.4].
It remains to prove the equivalence between convergence of diffeomorphisms in the 

distance and convergence of their inverses in Hs. One implication is the following. Again 
we use arguments developed in [10]. If gn converges to g in the distance dHs , then, by [10, 
Lemma 6.6], it is easy to show that g−1

n converges to g−1 in Hs. Here we need to note that 
we use a left-invariant metric, instead in [10] the metric used is the right-invariant dR
defined in Remark 2.9. Let us prove the other implication. If g−1

n converges in Hs to g−1, 
then, applying again [10, Lemma 2.2], we conclude that g−1

n ◦ g converges to the identity 
e in Hs. Since we have dHs(gn, g) = dHs(g−1

n ◦ g, e), we conclude the proof provided the 
following claim holds true. Let hn ∈ Hs(RN , RN ), n ∈ N, be such that hn converges to 
zero, as n → ∞, in Hs. Then gn = e + hn converges to e in the distance dHs . Applying 
to gn, for any n ∈ N, the construction used for the diffeomorphism g in the proof of 
(5.1), we obtain that gn(t) = (1 − t)e + tgn = ϕun(t) where un(t) = (gn − e) ◦ gn(t)−1. 
Then it is not difficult to show that ‖un‖ converges to 0 as n → ∞ and the proof is 
concluded. �
Remark 5.7. If Ω is any open set contained in RN , N ≥ 1, all properties stated above for 
R

N remain true provided we replace everywhere Hs(RN , RN ) with the following space
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Hs
Ω = {h ∈ Hs(RN ,RN ) : h(x) = 0 for any x /∈ Ω}.

Adopting a corresponding notation, (5.1) now may be written as GHs
Ω

= Ds(Ω)0.
We finally note that Hs

0(Ω, RN ) ⊂ Hs
Ω. These two spaces coincide under suitable 

assumptions, for instance if s is an integer and Ω is regular enough, see [1, Theorem 5.29].

An interesting consequence of Theorem 5.6 and of the previous remark is the following 
compactness result.

Proposition 5.8. Let Ω be a bounded open subset of RN , N ≥ 1. Let s0, s1 be such that 
N/2 + 1 < s0 < s1.

Let us consider a sequence {gn}n∈N ⊂ GH
s1
Ω

. If {gn}n∈N is bounded in GH
s1
Ω

, that is, 
there exists a constant C such that dHs1

Ω
(gn, e) ≤ C for any n ∈ N, then there exists a 

subsequence {gnk
}k∈N converging in dHs0

Ω
.

Proof. By Lemma 6.6 in [10], we immediately infer that, for some constant C1,

‖gn − e‖Hs1 ≤ C1 and ‖g−1
n − e‖Hs1 ≤ C1 for any n ∈ N.

Since Ω is bounded, we have that Hs1
Ω is compactly embedded in Hs0

Ω , therefore there 
exists a subsequence {gnk

}k∈N and g, g̃ belonging to e + Hs0
Ω such that

lim
k

(
‖gnk

− g‖Hs0 + ‖g−1
nk

− g̃‖Hs0

)
= 0.

It follows easily that g ∈ Ds0(Ω)0 and g−1 = g̃. Therefore, by Theorem 5.6, it is imme-
diate to conclude that limk dHs0

Ω
(gnk

, g) = 0 as well. �
We now consider the multiscale procedure. Using the notation of Subsection 2.4, we 

fix I0 and I1 in L2(Ω) and consider the maps UI0,I1 and ŨI0,I1 defined in (2.28). The 
fact that the functions GH � g �→ UI0,I1(g) and GH � ψ �→ ŨI0,I1(ψ) are sequentially 
continuous with respect to the weak convergence in GH is proved in Proposition 5.2.

We begin by observing that, using Proposition 4.2, one can show existence of a solution 
to (2.32) and (2.34), therefore the sequence {gn}n∈N exists, even if it is not uniquely 
determined. Clearly, sequences {ψn}n∈N, {g̃n}n∈N and {ψ̃n}n∈N are determined by the 
sequence {gn}n∈N.

Next we show how the results of Section 4 may be applied to our registration problem 
and what is their rephrasing in terms of the diffeomorphisms space GH. Let us note here 
that the abstract results apply to the formulation given by (2.33) and (2.35), that is, 
using ψ = g−1 instead of g.

Proof of Theorem 2.11. Immediate by Theorem 4.4. �
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Let us now consider the sequence {g̃n}n∈N and let {ũn}n∈N be a sequence in 
L2([0, 1], H) such that g̃n = ϕũn(1) and dH(g̃n, e) = ‖ũn‖. We recall that we are 
interested in finding conditions that allow boundedness of {g̃n}n∈N or of one of its subse-
quences. We shall show that a necessary and, provided (2.15) holds, sufficient condition 
is that a solution to (2.37) does exist. We recall that (2.37) admits a solution if and only 
if there exists ĝ ∈ GH solving the minimization problem (2.38). We recall that Ĝ is the 
set of solutions to (2.38). We call Ê the set of u ∈ L2([0, 1], H) such that ϕu(1) ∈ Ĝ and 
‖u‖ = dH(ĝ, e). We note that Ê is closed and bounded with respect to the strong topol-
ogy of L2([0, 1], H) and it is sequentially compact with respect to the weak convergence 
in L2([0, 1], H). We recall that Ĝ is closed and bounded with respect to the topology 
induced by the distance in GH and it is sequentially compact with respect to the weak 
convergence in GH. The same topological properties are shared by Ĝ−1 = {g−1 : g ∈ Ĝ}.

We have the following lemma, an extension of Lemma 2.12, showing necessity.

Lemma 5.9. If {g̃n}n∈N has a bounded subsequence, then there exists a further subse-
quence {g̃nk

}k∈N and g̃∞ ∈ GH such that {g̃nk
}k∈N converges weakly to g̃∞.

Furthermore, if {g̃n}n∈N has a bounded subsequence converging to g̃∞ ∈ GH either 
weakly or in dH, then g̃∞ ∈ Ĝ.

Proof. The first part follows immediately from Lemma 5.4.
If {g̃nk

}k∈N is a bounded subsequence converging weakly to g̃∞, the fact that g̃∞ is 
a solution to (2.37) follows by Theorem 2.11 and Proposition 5.2. Again by Lemma 5.4, 
the same conclusion holds if the convergence is in dH.

The fact that g̃∞ ∈ Ĝ will be proved later on in the proof of Theorem 5.12. �
About existence and uniqueness of a solution to (2.38), we make the following remarks. 

We note that, provided (2.37) has a solution, Ĝ may consists of more than one point, that 
is, we do not have uniqueness. Let us consider for example the square Q = [−1, 1] ×[−1, 1]
and let Q1 be Q rotated of an angle of π/4 in the clockwise sense. In order to register Q
with Q1 there are two perfectly equivalent strategies, namely we rotate Q1 of an angle 
of π/4 either again in the clockwise sense or in the counterclockwise sense. On the other 
hand, also existence may not be guaranteed in general, that is (2.37), and hence (2.38), 
may not have any solution as Younes already noted in [45] and the following simple 
example shows.

Example 5.10. Fixed ε, 0 < ε < 1/2, let us define a cutoff function χ : R → R such 
that χ ∈ C∞(R), χ is nondecreasing, it is equal to 0 on (−∞, ε] and it is equal to 1 on 
[1 − ε, +∞). For any λ, 0 ≤ λ < 1, let us define gλ : B2 → B2, B2 denoting the closed 
ball of radius 2 and center the origin in R2, in the following way. For any r, 0 ≤ r ≤ 2, 
and any θ, 0 ≤ θ ≤ 2π,

g(r(cos(θ), sin(θ))) = fλ(r, θ)(cos(θ), sin(θ))



1046 K. Modin et al. / Advances in Mathematics 346 (2019) 1009–1066
where

fλ(r, θ) = (1 − λ)r + λ
1 + cos(2θ)

2 χ(r/(1 − λ))r + λ
1 − cos(2θ)

2 χ(r − 1)r.

It is not difficult to show that gλ is a C∞ diffeomorphism from B2 onto itself. We note 
that g0 is the identity, that gλ(x1, x2) = (x1, x2) for any ‖(x1, x2)‖ ≥ 2 − ε, and that 
gλ(x1, x2) = (1 − λ)(x1, x2) for any ‖(x1, x2)‖ ≤ (1 − λ)ε.

Let E0 = B1 and let I0 = χE0 and Iλ = I0 ◦ g−1
λ , 0 ≤ λ < 1. We note that Iλ = χEλ

where the set Eλ = gλ(E0). It is not difficult to show that, as λ → 1−, Iλ = χEλ

converges pointwise, hence in L2(B2), to I1 = χE1 where

E1 =
{

(x1, x2) ∈ B2 : r ≤ 1 + cos(2θ)
2

}
.

Therefore,

0 = inf{‖I0 ◦ g − I1‖L2(B2) : g is a C1 diffeomorphism}.

However, I1 is the characteristic function of an eight-shaped figure which may never be 
obtained from the characteristic function of a ball through a C1 diffeomorphism, hence 
we may conclude that the minimum is not attained.

Let us also point out here that also coercivity in the mild sense of Proposition 3.1
may fail as the following example shows.

Example 5.11. Let I0 ∈ L2(R2) be any radial symmetric image which is 0 outside B1. 
Let h ∈ C∞

0 (R) be an auxiliary function such that 0 ≤ h ≤ 1, h(0) = 1 and h(r) = 0 for 
any |r| ≥ 1/4.

Then, for any n ≥ 1, we consider the following diffeomorphism ϕn such that for any 
r, r ≥ 0, and any θ, 0 ≤ θ ≤ 2π,

ϕn(r(cos(θ), sin(θ))) = r(cos(θ + hn(r)), sin(θ + hn(r)))

where hn(r) = h(n(r − 1/2)).
Clearly we have that, for any n ∈ N, ϕn ∈ Ds(RN )0 for any s > N/2 + 1. Moreover, 

ϕn = e outside B1 for any n ∈ N.
Note that I0 ◦ ϕ−1

n = I0 for any n ≥ 1. On the other hand, since {‖Dϕn‖L∞}n∈N is 
unbounded, we may not have that {ϕn}n∈N is bounded in GHs , for any s > N/2 + 1.

We are now ready to prove our main result, which illustrates the convergence in the 
diffeomorphisms space. We note that this is an extended version of Theorem 2.13.

Theorem 5.12. Let us assume that (2.15) holds.
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Then {g̃n}n∈N is bounded if and only if a solution to (2.37) exists.
In this case, there exists a subsequence {g̃nk

}k∈N and g̃∞ ∈ Ĝ (that is, g̃∞ is a solution 
to (2.38), possibly different from ĝ) such that, as k → ∞, g̃nk

converges to g̃∞ weakly, 
that is, in particular, g̃nk

→ g̃∞ and (g̃nk
)−1 → (g̃∞)−1 uniformly on compact subsets 

of Ω.
Moreover, we have that

lim
n

dH(g̃n, e) = dH(g̃∞, e) = dH(ĝ, e), (5.2)

and for any compact Q ⊂ Ω we have

lim
n

distQ(g̃n, Ĝ) = 0 (5.3)

where for any g ∈ GH

distQ(g, Ĝ) = inf{‖g − ĝ‖L∞(Q) + ‖g−1 − ĝ−1‖L∞(Q) : ĝ ∈ Ĝ}.

If we further have H = Hs
Ω, with s > N/2 +1, then there exists a subsequence {g̃nk

}k∈N

and g̃∞ ∈ Ĝ such that, as k → ∞, g̃nk
→ g̃∞ and (g̃nk

)−1 → (g̃∞)−1 in GHs
Ω
. Moreover, 

we have that

lim
n

dist(g̃n, Ĝ) = 0 and lim
n

dist(g̃−1
n , Ĝ−1) = 0 (5.4)

where for any g ∈ GHs
Ω
, dist(g, Ĝ) = inf{dHs

Ω
(g, ̂g) : ĝ ∈ Ĝ}.

Proof. The first part and (5.2) follow by Theorem 4.6, using ψ = g−1. Moreover, the 
argument in Theorem 4.6 allows us to complete the proof of Lemma 5.9 as well.

Since any subsequence of {g̃n}n∈N admits a further subsequence weakly converging to 
an element of Ĝ, (5.3) immediately follows.

Let us also point out the following remark. With the same notation as before, we have 
that, up to a subsequence, ũn converges to ũ∞ not only weakly in L2([0, 1], H) but also 
strongly. In fact, we recall that

dH(g̃∞, e) ≤ ‖ũ∞‖ ≤ lim sup
n

‖ũn‖ = lim sup
n

dH(g̃n, e) ≤ dH(ĝ, e) = dH(g̃∞, e).

Therefore we can conclude that

dH(g̃∞, e) = ‖ũ∞‖ = lim
n

‖ũn‖.

From this last property we may then conclude that, still up to a subsequence, actually 
ũn strongly converges to ũ∞ in L2([0, 1], H). We may also observe that

lim dist(ũn, Ê) = 0 (5.5)

n
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where for any u ∈ L2([0, 1], H), dist(u, Ê) = inf{‖u − û‖ : û ∈ Ê}.
For the case in which H = Hs

Ω, with s > N/2 + 1, the convergence in the distance 
dHs

Ω
and (5.4) follow by the previous remark and Theorem 5.6. �

It is still possible, however, that two different subsequences of {g̃n}n∈N converge to 
two different limits, that is, to two different solutions of (2.38), as suggested by the 
counterexample in Subsection A.2.

On the other hand, if (2.38) has a unique solution ĝ, then the whole sequence g̃n
converges to ĝ weakly in GH. Finally, if H = Hs

Ω, with s > N/2 + 1, the whole sequence 
g̃n converges to ĝ also in the distance dHs

Ω
.

6. The multiscale approach applied to the inverse conductivity problem

In this section we consider the multiscale procedure applied to the Calderón problem. 
We follow the notation introduced in Subsection 2.3.

Let Ω ⊂ R
N , N ≥ 2, be a bounded domain with Lipschitz boundary. Throughout this 

section we shall keep fixed positive constants a, b with a ≤ b. We recall the classes of 
conductivity tensors M(a, b), Msym(a, b) and Mscal. Let us point out that the ellipticity 
condition (2.17) is equivalent to the more usual one given by the following. For σ ∈
M

N×N (R), with N ≥ 2, and positive constants a, ̃b with a ≤ b̃, we require

{
σξ · ξ ≥ a‖ξ‖2 for any ξ ∈ R

N

‖σ‖ ≤ b̃.
(6.1)

We note that if σ satisfies (2.17) with constants a and b, then it also satisfies (6.1) with 
constants a and b̃ = b. On the other hand, if σ satisfies (6.1) with constants a and b̃, then 
it also satisfies (2.17) with constants a and b = b̃2/a. If σ is symmetric then (6.1) and 
(2.17) are equivalent and both correspond to the condition (2.18), with b = b̃. One can 
also define the class of conductivity tensors M̃(a, ̃b) as the set of σ ∈ L∞(Ω, MN×N (R))
such that, for almost any x ∈ Ω, σ(x) satisfies (6.1), with constants a, ̃b. Obviously we 
have M(a, b) ⊂ M̃(a, b) and M̃(a, ̃b) ⊂ M(a, ̃b2/a).

We note that all these classes are closed with respect to the Lp metric, for any p, 
1 ≤ p ≤ +∞, where for any conductivity tensor σ in Ω

‖σ‖Lp(Ω) = ‖(‖σ‖)‖Lp(Ω).

For any p, 1 < p < +∞, let p′ be its conjugate exponent, that is 1/p + 1/p′ = 1. We 
call W 1−1/p,p(∂Ω) the space of traces of W 1,p(Ω) functions on ∂Ω and let us recall that 
W 1−1/p,p(∂Ω) ⊂ Lp(∂Ω), with continuous immersion.

In Subsection 2.3, we have already defined, for any conductivity tensor σ in Ω, its 
corresponding Neumann-to-Dirichlet map N (σ). In an analogous way we define the 
Dirichlet-to-Neumann map.
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For a conductivity tensor σ in Ω, its corresponding Dirichlet-to-Neumann map is 
defined by

Λ(σ) : W 1/2,2(∂Ω) → W−1/2,2(∂Ω)

where for each ϕ ∈ W 1/2,2(∂Ω),

Λ(σ)(ϕ)[ψ] =
∫
Ω

σ∇u · ∇ψ̃ for any ψ ∈ W 1/2,2(∂Ω)

with u the solution to
{

−div(σ∇u) = 0 in Ω
u = ϕ on ∂Ω

(6.2)

and ψ̃ ∈ W 1,2(Ω) such that ψ̃ = ψ on ∂Ω in the trace sense. Then Λ(σ) is a well-defined 
bounded linear operator. Moreover, provided σ ∈ M(a, b), its norm is bounded by a 
constant depending on N , Ω, a and b only. Let us note that, actually, we have Λ(σ) :
W 1/2,2(∂Ω) → W

−1/2,2
∗ (∂Ω) and that N (σ) is the inverse of Λ(σ)|

W
1/2,2
∗ (∂Ω).

Our forward operators are

Λ : M(a, b) → L(W 1/2,2(∂Ω),W−1/2,2
∗ (∂Ω))

or

N : M(a, b) → L(W−1/2,2
∗ (∂Ω),W 1/2,2

∗ (∂Ω)).

We recall that the inverse conductivity problem consists in determining an unknown 
conductivity σ by performing (all possible) electrostatic measurements at the boundary 
of voltage and current type, that is, by measuring either its corresponding Dirichlet-to-
Neumann map Λ(σ) or its corresponding Neumann-to-Dirichlet map N (σ).

In order to apply our multiscale results to the inverse conductivity problem, we pick 
X = L1(Ω, MN×N (R)), with its natural norm. We may take as the subset E any of the 
following classes M(a, b), Msym(a, b) or Mscal(a, b).

We need to check the conditions that allow us to use our abstract results. First of 
all we investigate the continuity properties of our forward operators. Let B1 and B2 be 
two Banach spaces such that B1 ⊂ W 1/2,2(∂Ω) and W−1/2,2

∗ (∂Ω) ⊂ B2, with continuous 
immersions. Moreover, let B̃1 and B̃2 be two Banach spaces such that B̃1 ⊂ W

−1/2,2
∗ (∂Ω)

and W 1/2,2
∗ (∂Ω) ⊂ B̃2, with continuous immersions.

In the Dirichlet-to-Neumann case we let Y = L(B1, B2), with the distance d induced 
by its norm, and let Λ : E → Y . Furthermore, Λ̂ ∈ Y is the measured Dirichlet-to-
Neumann map.
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In the Neumann-to-Dirichlet case we let Y = L(B̃1, B̃2), with the distance d induced 
by its norm, and let N : E → Y . Furthermore, N̂ ∈ Y is the measured Neumann-to-
Dirichlet map.

In [35] the following lower semicontinuity result is proved.

Proposition 6.1. Under the previous assumptions, let us consider a sequence of conduc-
tivity tensors {σn}n∈N ⊂ E and a conductivity tensor σ in the same set.

If, as n → ∞, σn converges to σ strongly in X or in the H-convergence sense, then

‖N̂ − N (σ)‖Y ≤ lim inf
n

‖N̂ − N (σn)‖Y .

Furthermore, if E is M(a, b) or Msym(a, b), then the following minimum problem 
admits a solution

min{‖N̂ − N (σ)‖Y : σ ∈ E}. (6.3)

The same result holds for Λ and Λ̂.

The existence of a solution to (6.3) is due to the fact that M(a, b) and Msym(a, b)
are (sequentially) compact with respect to H-convergence. In order to have continuity, 
we need to consider suitable choices of the spaces B1, B2 and B̃1, B̃2. Namely we have 
the following result, see [35].

Proposition 6.2. Under the previous assumptions and notation, let E = M(a, b) and 
consider the distance d on Y , induced by its norm.

There exists Q1 > 2, depending on N , Ω, a and b only, such that the following holds 
for any 2 < p < Q1.

In the Dirichlet-to-Neumann case, we assume that B1 ⊂ W 1−1/p,p(∂Ω), with contin-
uous immersion. Then Λ is continuous with respect to the strong convergence in X and 
the distance d on Y .

In the Neumann-to-Dirichlet case, we assume that B̃1 is contained, with continu-
ous immersion, in the subspace of g belonging to the dual of W 1−1/p′,p′(∂Ω) such that 
〈g, 1〉 = 1. Then N is continuous with respect to the strong convergence in X and the 
distance d on Y .

A particularly interesting case for Neumann-to-Dirichlet maps is provided in the fol-
lowing.

Remark 6.3. We can choose B̃1 = B̃2 = L2
∗(∂Ω) since L2(∂Ω) is contained in the dual 

of W 1−1/p′,p′(∂Ω) for some p, 2 < p < Q1, with p close enough to 2, and W 1/2,2
∗ (∂Ω) ⊂

L2
∗(∂Ω), with continuous immersions.
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We illustrate the applicability of our abstract results for the inverse conductivity prob-
lem. First of all, we need to consider as Y and d = dY those satisfying the assumptions 
of Proposition 6.2. As noted in Subsection 2.3, there are several possible choices for | · |. 
Here we choose as | · | either | · |BV (Ω) or ‖ · ‖BV (Ω).

Then the results of Subsections 2.1 and 2.2 yield the following, with exactly the same 
notation.

Theorem 6.4. Assume that Y satisfies the hypotheses of Proposition 6.2 and that | · | is 
either | · |BV (Ω) or ‖ · ‖BV (Ω).

If (2.11) is satisfied, then for the multiscale sequence {σ̃n}n∈N defined by (2.9) from 
the sequence {σn}n∈N obtained from (2.7) and (2.8) we have that

lim
n

‖N̂ − N (σ̃n)‖Y = δ0 = inf{‖N̂ − N (σ)‖Y : σ ∈ E}.

Furthermore, if E = M(a, b) or E = Msym(a, b), then, up to a subsequence, σ̃n

H-converges to σ̃∞ ∈ E, where σ̃∞ solves (6.3).
The same result holds for Λ and Λ̂.

Let us observe that δ0 ≥ 0 corresponds to the noise level of our measurements and that 
Theorem 6.4 contains as special cases, namely taking an = 0 for any n ∈ N, Theorem 2.6
and Corollary 2.7.

If we wish to have a stronger convergence than H-convergence, we need further as-
sumptions, and apply the tighter multiscale construction. We assume that there exists 
σ̂ ∈ E such that

‖N̂ − N (σ̂)‖Y = δ0 = min{‖N̂ − N (σ)‖Y : σ ∈ E} and |σ̂| < +∞. (6.4)

As before, we may assume that σ̂ solves the following minimization problem

min{|σ| : σ ∈ E and ‖N̂ − N (σ)‖Y = δ0} < +∞. (6.5)

We call Ê the set of solutions of (6.5) and we note that Ê is compact in X.

Theorem 6.5. Assume that Y satisfies the hypotheses of Proposition 6.2 and that | · | is 
either | · |BV (Ω) or ‖ · ‖BV (Ω). We further assume that (2.15) holds and that there exists 
a solution σ̂ of (6.5).

Consider the sequence {σ̃n}n∈N defined by (2.9) from the sequence {σn}n∈N obtained 
from (2.7) and (2.8).

Then, up to a subsequence, σ̃n converges to σ̃∞ strongly in X, where σ̃∞ is a (possibly 
different from σ̂) solution to (6.5), that is ‖N̂−N (σ̃∞)‖Y = δ0 and |σ̃∞| = |σ̂|. Moreover, 
we have that

lim |σ̃n| = |σ̂|

n
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and

lim
n

dist(σ̃n, Ê) = 0. (6.6)

The same result holds for Λ and Λ̂, with the obvious changes, for example Ê in this 
case is the set of solutions of

min{|σ| : σ ∈ E and ‖Λ̂ − Λ(σ)‖Y = δ0} < +∞.

Theorem 6.5 contains as a special case Theorem 2.8.
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Appendix A. Optimality of the abstract results

In this appendix we shall present arguments and examples that show the optimality 
of our abstract results. Throughout we use the assumptions and the notation of Subsec-
tion 2.2.

A.1. The single-step regularization

For any λ > 0, let σλ be a solution to

min
{(

λ[d(N̂ ,N (σ))α] + |σ|β
)

: σ ∈ E
}
.

Our assumptions guarantee that at least one minimizer σλ does exist. Then we have the 
following result.
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Proposition A.1. We have that

lim
λ→+∞

d(N̂ ,N (σλ)) = δ0.

Proof. By contradiction, assume that there exists a sequence {λn}n∈N of positive num-
bers such that limn λn = +∞ and such that limn d(N̂ , N (σλn

)) = ε0 > δ0.
Hence there exist 0 < C1 < 1 and σ ∈ E such that (3.1) and (3.2) hold. We have that 

for any n ∈ N

d(N̂ ,N (σλn
))α ≤ d(N̂ ,N (σλn

))α + 1
λn

|σλn
|β ≤ d(N̂ ,N (σ))α + 1

λn
|σ|β .

Since, as n → ∞, the left hand side converges to εα0 and the right hand side converges 
to d(N̂ , N (σ))α ≤ C1ε

α
0 < εα0 , we have a contradiction. �

It is clear that for any sequence {λn}n∈N of positive numbers such that limn λn = +∞
and such that σλn

converges to some σ∞, then σ∞ is a solution to (2.12).
Let us now investigate which conditions allow convergence of {σλ}λ>0, as λ → +∞, at 

least up to subsequences. Namely, we consider a sequence {λn}n∈N of positive numbers 
such that limn λn = +∞ and we ask whether {σλn

}n∈N, or one of its subsequences, 
converges. Clearly a necessary condition is that a solution to (2.12) does exist.

Let us make the following stronger assumption. We assume that there exists σ̂ ∈
E solving (2.14). Let us recall that Ê is the set of solutions of (2.14) and that Ê is 
sequentially compact in X.

First of all we note that |σλ| ≤ |σ̂| for any λ > 0. Hence, by the lower semicontinuity 
properties of | · |, the following result is immediate.

Proposition A.2. Let us assume that there exists a solution σ̂ of (2.14).
Let us consider a sequence {λn}n∈N of positive numbers such that limn λn = +∞.
Then, up to a subsequence, {σλn

}n∈N converges to σ∞ where σ∞ is a (possibly different 
from σ̂) solution to (2.14), that is, d(N̂ , N (σ∞)) = δ0 and |σ∞| = |σ̂|. Furthermore, we 
have that

lim
λ→+∞

|σλ| = |σ̂|

and

lim
λ→+∞

dist(σλ, Ê) = 0. (A.1)

It can be immediately noted that, using our multiscale procedure, we do not lose any 
of the convergence properties that hold for the single-step regularization when we let the 
regularization parameter go to +∞.
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In the next example we wish to prove the following remarks. Let us assume that a 
solution to (2.12) does exist but (2.13) does not hold, that is, (2.14) does not have a 
solution. Then we may have that σλ does not converge, not even up to subsequences, to a 
solution to (2.12). This suggests that even for the multiscale scale, the validity of (2.13), 
although a strong requirement, is a necessary assumption to guarantee convergence of 
the sequence {σ̃n}n∈N or of one of its subsequences.

Example A.3. We shall show two different cases. In the first one we obtain that σλ is 
bounded but does not converge, not even up to subsequences. In the second one we have 
that σλ is such that limλ→+∞ ‖σλ‖ = +∞.

Let us consider the following common framework for these two examples. Let

l2 =
{
a = {an}n≥1 : an ∈ R for any n ≥ 1 and

+∞∑
n=1

a2
n < +∞

}

which is a Hilbert space with the scalar product

〈a, b〉 =
+∞∑
n=1

anbn for any a, b ∈ l2.

Therefore we define, for any a ∈ l2,

‖a‖ =
(+∞∑

n=1
a2
n

)1/2

and |a| =
(+∞∑

n=1
(nan)2

)1/2

.

It is easy to show that | · | satisfies the assumptions stated above.
Let us fix b ∈ l2 such that |b| = +∞. Then we shall define two different versions of a 

continuous function N : l2 → R such that N (b) = 0 and N (a) > 0 for any a ∈ l2, a �= b. 
We fix the data α = 2, β = 2, X = E = l2 and N̂ = 0 = N (b).

In both cases we need the following construction. For any r > 0 let us consider the 
following minimization problem

f(r) = min{|a| : ‖a− b‖ = r}.

It is easy to show that such a minimization problem has a solution. It is a straightforward, 
even if long, computation to show that f : (0, ‖b‖] → R is a nonnegative, continuous, 
strictly decreasing function such that f(‖b‖) = 0 and limr→0+ f(r) = +∞.

Then we call A1 = {a ∈ l2 such that ‖a− b‖ ≤ ‖b‖/2} and we set

N (a) = 1/f(r) for any a ∈ A1 such that ‖a− b‖ = r,

thus meaning also that N (b) = 0. We can show that, fixed λ > 0,
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min
{(

|N (a)|2 + |a|2/λ
)

: a ∈ A1
}

is equivalent to solve

min
{(

1
x

+ x

λ

)
: x ≥ C

}
=
{

2/
√
λ if

√
λ ≥ C

1/C + C/λ if
√
λ ≤ C

where C = (f(‖b‖/2))2.
The definition of N outside A1 is different for the two examples. Let us begin with 

the first one.

First version. Let us define an auxiliary function Ñ : l2 → R as follows

Ñ (a) =
+∞∑
n=1

|an|
n2 for any a = {an}n≥1 ∈ l2.

Clearly Ñ is continuous and it is positive except for a = 0. Fixed a positive constant r, 
let us consider

c(λ, r) = min
{(

|Ñ (a)|2 + |a|2/λ
)

: a ∈ l2 such that ‖a‖ = r
}
.

Let us assume that for some n ≥ 3, we have n4 ≤ λ < (n + 1)4, that is 
√
λ = c21n

2 +
c22(n + 1)2 with c1 and c2 nonnegative numbers such that c21 + c22 = 1. Take a ∈ l2 such 
that ai = 0 for any i different from n and n + 1, an = rc1, and an+1 = rc2. We obtain 
that

c(λ, r) ≤ r2

((
c1
n2 + c2

(n + 1)2

)2

+ 1√
λ

)
≤ r2

(
2
n4 + 1√

λ

)
≤ r2

(
2√
λ

)
.

Therefore there exists λ ≥ 34 > 0 such that for any λ ≥ λ we have 
√
λ ≥ 4C. Then 

we have that

2√
λ
≤ 1

C
= N (a)2 for any a ∈ ∂A1.

We fix r0 such that 0 < r0 < max{1/2, ‖b‖/4}. Then we call

A2 = {a ∈ l2 such that r0/2 ≤ ‖a‖ ≤ 3r0/2}

and we define

N (a) = Ñ
(
r0

a

‖a‖

)
+ C1 |‖a‖ − r0| for any a ∈ A2

where C1 is a positive constant such that |N (a)|2 > 1/C for any a ∈ ∂A2.
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Then we can extend N in a continuous way outside A1 ∪ A2 in such a way that 
N (a) > 0 and |N (a)|2 ≥ 1/C for any a ∈ l2\(A1 ∪A2). We obtain that N is continuous, 
nonnegative, and it is 0 only at b. Nevertheless, for any λ ≥ λ we have that σλ ∈ A2, 
actually we easily deduce that r0/2 ≤ ‖σλ‖ ≤ r0.

Therefore for any sequence {λn}n∈N of positive numbers such that limn λn = +∞ we 
have that {σλn

}n∈N can not converge. In fact, if we had convergence of σλn
to σ∞ we 

would obtain that r0/2 ≤ ‖σ∞‖ ≤ r0 ≤ ‖b‖/4 and N (σ∞) = 0 and this is a contradiction.

Second version. We consider the following auxiliary function g : [0, +∞) → R such that 
g is continuous, strictly positive, nonincreasing and satisfies the following assumptions. 
First, g(r) = 1/f(‖b‖/2) for any r such that 0 ≤ r ≤ 2‖b‖. Then, for any r such that 
r > 2‖b‖, we set g(r) = C1e−r2 with C1 a constant such that C1e−(2‖b‖)2 = 1/f(‖b‖/2). 
It is easy to show that there exists λ > 0 such that for any λ ≥ λ we have

min
r≥0

{(g(r))2 + r2/λ} = 1
2λ

(
1 + log(2C2

1λ)
)
.

Such a minimum is reached, uniquely, at r = rλ =
√

(1/2) log(2C2
1λ) for λ ≥ λ.

Then we define N (a) = g(‖a‖) for any a ∈ l2\A1. Clearly we have that N is again 
continuous, nonnegative, and it is 0 only at b. Moreover, for any λ ≥ λ we have

min{|N (a)|2 + |a|2/λ : a ∈ l2\A1} = 1
2λ (1 + log(2C2

1λ))

and it is reached, uniquely, in a = aλ where aλ1 = rλ and aλn = 0 for any n ≥ 2.
It is immediate to note that for some λ1 ≥ max{λ, C2} we have that for any λ ≥ λ1

it holds

1
2λ (1 + log(2C2

1λ)) < 2√
λ

therefore there exists a unique solution to the minimization problem

min{|N (a)|2 + |a|2/λ : a ∈ l2}

given by σλ = aλ. We conclude that

lim
λ→+∞

‖σλ‖ = +∞.

A.2. A counterexample

In this example we consider the abstract tighter multiscale construction presented in 
Subsection 2.2. We wish to show that, in general, the sequence {σ̃n} may not converge 
and that it may have different subsequences converging to different limits.
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Le us consider the space X to be R2 with the usual Euclidean norm and Y to be R
with the usual distance. We also set E = R

2.
Let us consider two continuous functions N , Ξ : R2 → R such that for any x ∈ R

2 we 
have

N (x), Ξ(x) is greater than, equal or lesser than 1 if and only if ‖x‖ is.

Therefore, in both cases, if we fix N̂ = 1 we have that Ê = ∂B1.
We assume that, for any n ≥ 0 we have

λn = bn and an = 1/cn

where

c ≥ 9 and b/c > 2, (A.2)

note that an ≤ an−1 for any n ≥ 1 and that limn an = 0. Finally, we set

α = β = γ = 1.

We conclude that (2.15) holds.
Let us consider the sequences {σ̃n}n∈N corresponding to N and {τ̃n}n∈N corresponding 

to Ξ. It is not difficult to show that Theorem 2.5 and (2.16) hold for both sequences.
We shall assume that Ξ is radial and that N is lesser than or equal to Ξ, namely there 

exists a continuous nondecreasing function Ξ̃ : [0, +∞) → R such that for any x ∈ R
2

N (x) ≤ Ξ(x) = Ξ̃(‖x‖).

We consider the following two sequences

rn =
n∑

j=0

(
1
2

)j+1

and sn = rn + rn+1 − rn
2 for any n ≥ 0.

Clearly, 0 < rn < sn < rn+1 < 1 for any n ≥ 0 and limn rn = limn sn = 1. To simplify 
the notation sometimes we may use r−1 = 0.

We also need to define this further sequence

hn = 1 − 9
8

(
1

cn+1 + 1
bn+1

)
1

2n+2 for any n ≥ 0.

By our assumptions on c we have 0 < 3/4 ≤ hn < hn+1 < 1 for any n ≥ 0 and 
limn hn = 1.
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We define Ξ̃ as follows, for a given ε > 0,

Ξ̃(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h0 + 2(r − r0) − ε(r − r0)2 if 0 ≤ r ≤ r0
hn if rn ≤ r ≤ sn, n ≥ 0

hn + hn+1 − hn

rn+1 − sn
(r − sn) if sn ≤ r ≤ rn+1, n ≥ 0

1 + 2(r − 1) if 1 ≤ r

(A.3)

whereas, concerning N , we assume that

N (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ξ(x) if 0 ≤ ‖x‖ ≤ r0
Ξ(x) = h2n if r2n ≤ ‖x‖ ≤ s2n, n ≥ 0
Ξ(x) if s2n+1 ≤ ‖x‖ ≤ r2n+2, n ≥ 0
Ξ(x) if 1 ≤ ‖x‖,

(A.4)

and that h2n ≤ N (x) ≤ Ξ(x) for any x such that s2n ≤ ‖x‖ ≤ s2n+1, n ≥ 0.
We note that Ξ̃ is a Lipschitz function over [0, +∞), therefore also Ξ is a Lipschitz 

function over R2.
We call

f0(x) = |1 −N (x)| + 2‖x‖ and g0(x) = |1 − Ξ(x)| + 2‖x‖.

We begin by stating that

∂Br0 = arg min
x∈R2

f0(x) = arg min
x∈R2

g0(x).

Therefore, without loss of generality we may assume that σ̃0 = τ̃0 = (r0, 0).
In fact, first of all we note that

g0(r0, 0) = (1 − h0) + 2r0 < g0(x) = (1 − (h0 + 2(‖x‖ − r0) − ε(‖x‖ − r0)2) + 2‖x‖ =

(1 − h0) + 2r0 + ε(‖x‖ − r0)2 for any 0 ≤ ‖x‖ < r0.

Then we have that, since c ≥ 9,

g0(r0, 0) = 9
8

(
1
c

+ 1
b

)
1
22 + 1 < 2r1 = 3/2 ≤ g0(x) for any ‖x‖ ≥ r1.

It remains to consider the case r0 < ‖x‖ < r1 where we have that g0(r0, 0) < g0(x) is 
equivalent to

9
(

1 + 1
)

1
2 + 1 < (1 − Ξ(x)) + 2‖x‖ for any r0 < ‖x‖ < r1.
8 c b 2
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This is obviously true if r0 < ‖x‖ ≤ s0 since Ξ(x) = h0 there. If s0 < ‖x‖ ≤ r1, then we 
need to show that

1 < −h1 − h0

r1 − s0
(r − s0) + 2r for any s0 < r < r1

that follows from easy computations.
The result for f0 follows by noticing that f0(r0, 0) = g0(r0, 0) and f0(x) ≥ g0(x) for 

any x ∈ R
2.

The first important result is the following.

Proposition A.4. Under the previous notation and assumptions, let us assume that τ̃0 =
(r0, 0). Then for any n ≥ 0 we have

τ̃n = (rn, 0).

The proof of this proposition follows essentially by the next lemma. First let us recall 
the following notation. For a fixed n ≥ 0 let us suppose that we have computed τ̃n and 
σ̃n. Then τ̃n+1 is the (unique) minimizer over R2 of the functional gn+1(x) = bn+1|1 −
Ξ(x)| + (b/c)n+1‖x‖ + ‖x − τ̃n‖, whereas σ̃n+1 is a minimizer over R2 of the functional 
fn+1(x) = bn+1|1 −N (x)| + (b/c)n+1‖x‖ + ‖x − σ̃n‖.

Lemma A.5. For a fixed n ≥ 0 let us assume that τ̃n = (rn, 0). Then

rn ≤ ‖τ̃n+1‖ < sn+1.

Proof. It is enough to show that

gn+1(x) ≥ (b/c)n+1sn+1 + sn+1 − rn >

bn+1(1 − hn) + (b/c)n+1rn = gn+1(τ̃n+1) for any x s.t. ‖x‖ ≥ sn+1 (A.5)

and that

gn+1(x) ≥ bn+1(1 − Ξ(x)) + (b/c)n+1‖x‖ + rn − ‖x‖ >

bn+1(1 − hn) + (b/c)n+1rn = gn+1(τ̃n+1) for any x s.t. ‖x‖ < rn. (A.6)

We begin by noticing that (A.5) is equivalent to

(
1

cn+1 + 1
bn+1

)
(sn+1 − rn) > 1 − hn = 9

8

(
1

cn+1 + 1
bn+1

)
1

2n+2

which is true since c ≥ 9 and
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sn+1 − rn = (sn+1 − rn+1) + (rn+1 − rn) = (1/2) 1
2n+3 + 1

2n+2 = (5/4) 1
2n+2 .

For what concerns (A.6), we argue in the following way. We note that (A.6) is equiv-
alent to

Ξ̃(r) < hn +
(

1
cn+1 − 1

bn+1

)
(r − rn), 0 ≤ r < rn

which is implied by

Ξ̃(r) < Gn(r) = hn +
(

1
cn+1

)
(r − rn), 0 ≤ r < rn. (A.7)

Therefore it remains to prove (A.7). The case n = 0 is trivial. Fixed n ≥ 1, we begin 
by proving (A.7) for r satisfying rn−1 ≤ r < rn. First of all we observe that hn−1 <

Gn(rn−1) therefore (A.7) holds for any r, rn−1 ≤ r ≤ sn−1. In particular, Ξ̃(sn−1) <
Gn(sn−1). We have that for any r, sn−1 ≤ r ≤ rn, Ξ̃(r) = Ξ̃(sn−1) + ln(r − sn−1)
whereas Gn(r) = Gn(sn−1) +(1/cn+1)(r−sn−1). Since Ξ̃(sn−1) < Gn(sn−1) and Ξ̃(rn) =
Gn(rn) = hn it is easy to conclude that (A.7) holds for any r, rn−1 ≤ r < rn and any 
n ≥ 0, where r−1 = 0. In order to conclude the proof we note that, for any n ≥ 1, 
Gn−1(rn−1) = hn−1 < Gn(rn−1) and that Gn is affine with the coefficient of the linear 
part given by (1/cn+1) which is decreasing with respect to n. We obtain that Gn−1(r) <
Gn(r) for any r, 0 ≤ r ≤ rn−1. By induction we conclude that for any 0 ≤ m < n we 
have

Ξ̃(r) ≤ Gm(r) < Gn(r) for any rm−1 ≤ r ≤ rm.

Therefore (A.7) holds true and the proof is concluded. �
By using the fact the Ξ is radial, thus reducing the problem to a minimization on the 

interval [rn, sn+1], it is easy to show that if, for a fixed n ≥ 0, we have τ̃n = (rn, 0), 
then τ̃n+1 = (rn+1, 0). Therefore, Proposition A.4 follows by an elementary induction 
argument.

An interesting corollary of Lemma A.5 is the following. Let us assume that, for a fixed 
n ≥ 0, ‖σ̃n‖ = ‖τ̃n‖ = rn and N (σ̃n) = Ξ(σ̃n) = Ξ(τ̃n) = hn. Then

rn ≤ ‖σ̃n+1‖ < sn+1.

Furthermore, for any n ≥ 0, if we have σ̃2n+1 = r2n+1(cos(θ), sin(θ)), for some θ ∈ [0, 2π), 
and N (σ̃2n+1) = h2n+1, then there exists a unique minimizer

σ̃2n+2 = r2n+2(cos(θ), sin(θ)).

The counterexample is based on the following lemma.
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Fig. 1. Illustration of the geometric construction underlying the counterexample in Theorem A.7.

Lemma A.6. There exists an integer n ≥ 1 such that for any n ≥ n we have the following. 
We may construct a Lipschitz continuous function N , a modification of the function 
Ξ on the annulus Bs2n+1\Bs2n , satisfying the previous assumptions and the following 
properties. For any x = (x1, x2) ∈ Bs2n+1\Bs2n we have, first, that h2n ≤ N (x) ≤ Ξ(x). 
Second, N (x1, x2) = N (x1, −x2). Third, N ((0, r2n+1)) = h2n+1 and, assuming that 
σ̃2n = (r2n, 0),

{(0, r2n+1), (0,−r2n+1)} = arg min
x∈R2

f2n+1(x).

Therefore σ̃2n+1 = (0, r2n+1) satisfies N (σ̃2n+1) = h2n+1 and is a minimizer to f2n+1.

Proof. We already know that

arg min
x∈R2

f2n+1(x) = arg min
x∈R2: r2n≤‖x‖≤s2n+1

f2n+1(x).

We modify Ξ in Br2n+2\Br2n . Let x = (x1, x2) ∈ Br2n+2\Br2n . We set N (x) = Ξ(x)
if r2n ≤ ‖x‖ ≤ s2n and if s2n+1 ≤ ‖x‖ ≤ r2n. We set N (x) = Ξ(x) also if x1 ≤ 0. 
Furthermore, we assume that N (x1, x2) = N (x1, −x2). Therefore, we limit ourselves to 
consider points x ∈ Br2n+2\Br2n such that x1, x2 ≥ 0.

In Bs2n+1\Bs2n we perform the following geometric construction, which is summarized 
in Fig. 1.

We consider the segment connecting σ̃2n = (r2n, 0) and our candidate to be a mini-
mizer σ̃2n+1 = (0, r2n+1). We call Q the point which is the intersection of this segment 
with ∂Bs2n . Finally we consider a point P belonging to the segment connecting Q to 
σ̃2n+1. We call r = r(P ) = ‖P‖ and we denote t = t(P ) = r(P ) +(s2n+1 − r2n+1). When 
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P = Q we denote t2n = t(Q) = r(Q) + (s2n+1 − r2n+1) = s2n + (s2n+1 − r2n+1) < r2n+1
and we observe that, when P = σ̃2n+1, t(σ̃2n+1) = s2n+1.

Let us assume that P = (x0
1, x

0
2), we call P ′ = (x0

1, −x0
2). Then we consider the points 

P̃ = (x0
1, x

1
2), with x1

2 > 0, and P̃ ′ = (x0
1, −x1

2) that are the intersections of the vertical 
line {x1 = x0

1} with ∂Bt(P ). We call γP the following curve that is formed by four 
parts. The first part, γ1

P consists of the points x belonging to ∂Br(P ) such that x1 ≤ x0
1. 

Two other parts, γ2
P and γ3

P , are the vertical segments connecting P to P̃ and P ′ to P̃ , 
respectively. Finally, the fourth part γ4

P consists of the points x belonging to ∂Bt(P ) such 
that x1 ≥ x0

1.
Then we define N in the following way. We set N (x) = h2n if x belongs to ∂Br2n , if 

x belongs to γQ and if x lies between these two curves (the region A in Fig. 1). We set 
N (x) = h2n+1 if x belongs to ∂Bs2n+1 , if x belongs to γσ̃2n+1 and if x lies between these 
two curves (the region B in Fig. 1). We note, in particular, that N (σ̃2n+1) = h2n+1. 
Finally for any x ∈ γP , P belonging to the segment connecting Q to σ̃2n+1, we set 
N (x) = Ξ̃(r(P )).

We observe that for any P belonging to the segment connecting Q to σ̃2n+1,

arg min
x∈γP

f2n+1(x) = {P, P ′}. (A.8)

In fact, for any x ∈ γP we have ‖x‖ ≥ ‖P‖ and N (x) = N (P ). For any x belonging to 
γ1
P , γ2

P or γ3
P we have that ‖x − σ̃2n‖ ≥ ‖P − σ̃2n‖ with equality holding only if x = P

or x = P ′, therefore

arg min
x∈(γ1

P∪γ2
P∪γ3

P )
f2n+1(x) = {P, P ′}.

Finally, it is easy to remark that

arg min
x∈γ4

P

f2n+1(x) = {(t(P ), 0)}.

Therefore, the candidates to be a minimizer of f2n+1 on γ(P ) are either the couple P
and P ′ or the point (t(P ), 0). We have that f2n+1(P ) < f2n+1(t(P ), 0) if and only if

(
b

c

)2n+1

r(P ) + ‖P − σ̃2n‖ <

(
b

c

)2n+1

t(P ) + (t(P ) − r2n).

On the other hand, t(P ) − r(P ) = s2n+1 − r2n+1 = (1/2)(1/22n+3) = 1/22n+4, therefore 
since b > 2c, there exists n1 ≥ 1 such that for any n ≥ n1 we have

16 <

(
b

2c

)2n+1

,

hence
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‖P − σ̃2n‖ ≤ 2 <

(
b

c

)2n+1

[t(P ) − r(P )] <
(
b

c

)2n+1

[t(P ) − r(P )] + (t(P ) − r2n)

and (A.8) is proved.
Next we show that

f2n+1(σ̃2n+1) < f2n+1(σ̃2n) = b2n+1(1 − h2n) +
(
b

c

)2n+1

r2n (A.9)

that is

(
1
c

)2n+1

(r2n+1 − r2n) +
(

1
b

)2n+1

‖σ̃2n+1 − σ̃2n‖ < h2n+1 − h2n =

9
8

[(
1

c2n+1 + 1
b2n+1

)
1

22n+2 −
(

1
c2n+2 + 1

b2n+2

)
1

22n+3

]
.

Since r2n+1 − r2n = 1/22n+2 and ‖σ̃2n+1 − σ̃2n‖ ≤ 2, it is enough to prove that

2
(

1
b

)2n+1

<
1
8

(
1

c2n+1 + 1
b2n+1

)
1

22n+2 − 9
8

(
1

c2n+2 + 1
b2n+2

)
1

22n+3 .

We note that, since c ≥ 9, we have that

9
2

(
1

c2n+2 + 1
b2n+2

)
≤ 1

2

(
1

c2n+1 + 1
b2n+1

)

hence it is enough to prove that

2
(

1
b

)2n+1

<
1
16

(
1

c2n+1 + 1
b2n+1

)
1

22n+2

or even

2
(

1
b

)2n+1

<
1
32

(
1
2c

)2n+1

which is true if

64 <

(
b

2c

)2n+1

.

Therefore there exists n ≥ n1 such that for any n ≥ n (A.9) holds true.
It remains to show that

f2n+1(σ̃2n+1) < f2n+1(P )
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for any P belonging to the segment connecting Q to σ̃2n+1, P clearly different from σ̃2n+1. 
We begin by noticing that f2n+1(σ̃2n+1) < f2n+1(Q) since f2n+1(Q) > f2n+1(σ̃2n). Then 
the problem reduces to a minimization over a real interval and the conclusion follows by 
elementary computations.

We finally remark that, by construction, N is Lipschitz on Bs2n+1\Bs2n . �
We have the following theorem, which contains our counterexample.

Theorem A.7. Under the previous notation and assumptions, there exists a Lips-
chitz function N and an integer n ≥ 1 such that for any n ≥ 0 we have σ̃n =
rn(cos(θn), sin(θn)), with θn ∈ [0, +∞) satisfying the following property

θn = 0 for any n, 0 ≤ n ≤ 2n

and, for any m ≥ 1,

θn = mπ/2 for any n = 2n + 2m− 1, 2n + 2m.

Proof. We assume that N and Ξ coincide for any x such that ‖x‖ ≤ r2n. Therefore, 
assuming σ̃0 = (r0, 0), it is easy to conclude that σ̃n = (rn, 0) for any n, 0 ≤ n ≤ 2n.

Then, on Bs2n+1\Bs2n , we use the function N defined in Lemma A.6. Therefore, we 
infer that σ̃2n+1 = (0, r2n+1) and, by the remark made after Lemma A.5, we also have 
that σ̃2n+2 = (0, r2n+2). Then by repeating the same construction, up to a rotation, we 
easily conclude the proof by an induction argument. �
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